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1.0 INTRODUCTION

The material presented herein is a result of work done in support of various research,
test, and test facility development projects conducted in the Propulsion Wind Tunnel
Facility (PWT). The topics considered are somewhat independent, and an effort is made
to develop each in an essentially self-contained section. This permits the results to be
reviewed and extracted for particular applications as desired without sorting through the
entire report. However, an important use of these results is their application as a unit
to the analysis of experimental data. Such an application is made, not only as an example
to illustrate this point, but to analyze experimental turbulent boundary-layer measurements
made in PWT.

The first topic considered (Section 2.0) is a laminar and/or turbulent numerical
boundary-layer calculation technique in which the Reynolds stress is related to the local
turbulent kinetic energy of the flow, e, and a modified form of the turbulent kinetic
energy equation is used to solve for e throughout the boundary layer. This approach has
certain advantages over the classical mixing-length approach. For example, computations
can be performed of transition flow, initial and free-stream turbulence levels can be taken
into account, and the integration is carried completely to the wall where natural boundary
conditions can be imposed. This numerical calculation technique is developed for the
purpose of performing reasonable engineering predictions -of incompressible and
compressible turbulent boundary layers. The major effort of this portion of the report
is in the modeling of the various terms of the turbulent kinetic energy equation.

Section 3.0 contains the development of an analytical investigation of turbulence
near a wall. The approach is unique in that it is based on the turbulent kinetic energy
equation developed in Section 2.0, and it does not depend on mixing-length or
. damping-factor concepts. The results include closed-form expressions for the velocity,
Reynolds stress, production of turbulence, and dissipation of turbulence. Moreover, the
results show good agreement with experimental data and are valid from the wall through
the so-called sublayer and buffer layer and into the fully turbulent portion of the boundary
layer. An important application of these results is that of providing information of the
region near the wall where experimental measurements are not routinely made (usually
never made during wind-tunnel tests because of the experimental difficulties and/or data
acquisition time). These analytical results are used to more accurately determine
boundary-layer parameters from experimental data such as displacement thickness and
momentum thickness ‘as discussed in Section 5.0.
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Section 4.0 is concerned with the development of analytical relationships between
velocity and temperature throughout turbulent boundary layers on constant temperature
or adiabatic walls for nonunity Prandtl numbers. Analytical solutions are of interest as
opposed to numerical ones for purposes of data reduction of, e.g. pitot pressure
measurements and holographic interferometric measurements. In addition, Reynolds
analogy is calculated from these solutions which is shown to be in good agreement with
previous results for near adiabatic wall conditions, and predicts the quantity 2 cy/cs to
decrease with decreasing wall temperature. This prediction is also shown to be supported
by comparisons with experimental data, and apparently such a variation has not previously
been predicted.

In Section 5.0 the result for the velocity distribution and the velocity-temperature
relations (Sections 3.0 and 4.0) are included in the development of a data reduction
computer program for the purpose of reducing pitot pressure measurements made in
turbulent boundary layers. The code is written to obtain spatial distributions of velocity
and temperature, local skin friction, and various boundary-layer parameters.

The results of Sections 2.0 through 5.0 are applied in Section 6.0 to the analysis
of turbulent boundary-layer measurements made in Propulsion Wind Tunnels 16S, 16T,
and the Acoustic Research Tunnel (ART) in PWT. The experimental data considered include
previously reported measurements made in Tunnel 16S and recently acquired unpublished
data in Tunnels 168, 16T, and ART. Results of this analysis which are of particular interest
include (1) new skin-friction coefficients determined from measurements made in Tunnel
16S and their impact on transition correlations of data taken in 16S and (2) the nature
of the flow in the nozzle boundary layer of Tunnel 16T.

This report contains a fair amount of new results. For example, (1) the particular
modeling of the turbulent kinetic energy equation developed in Section 2.0 has not been
used previously, (2) the analytical results obtained in Section 3.0 concerning turbulence
near a wall are new, but more importantly this particular development (i.e. without
mixing-length theory) has not been followed previously, and (3) the analytical
velocity-temperature relations and Reynolds analogy for nonunity Prandtl numbers
obtained in Section 4.0 are also new. Therefore, because these results are not common
nor time tested, effort was expended in assessing the accuracy of each by numerous
comparisons with experimental data. In Sections 2.0 through 4.0, these experimental
comparisons follow the theoretical development of the results. The computer programs
for the boundary-layer calculations and the data reduction procedure (Sections 2.0 and
5.0) are included in Appendixes A and B, respectively.
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2.0 NUMERICAL BOUNDARY-LAYER CALCULATIONS

This numerical technique draws heavily from that of previous investigators. Portions
of several sources have been extracted and modified where deemed necessary for the -
purpose -of improving the results. The objective was to obtain as accurate results as possible
(the standard for which was comparisons with experimental data) for various flow
conditions, while attaining a physically reasonable model with minimum empiricism (the
constants of which were not allowed to change for the various flow conditions). The
result is a fairly easy to use numerical method which yields results in relatively good
agreement with experimental data for the flows considered. However, there is much room
for improvement. For example, the present code will run for laminar or turbulent flow
and calculate through transition, producing quite reasonable looking velocity profiles.
Unfortunately, the point of transition occurs upstream (lower Reynolds number) of that
observed experimentally. Little has been attempted with the present code concerning
possible improvements in calculating transition.

It should be noted that this investigation was made much easier by the powerful
numerical method for diffusion-type equations developed by Patankar and Spalding (Ref.
1). Effort here was expended in modeling the equations rather than in their solution.
A listing of the resulting computer code is given in Appendix A.

2.1 DIMENSIONLESS BOUNDARY-LAYER EQUATIONS

The choice of the dimensionless variables was such as to recover the general form
of the physical-plane equations considered by Patankar and Spalding (Ref. 1) who applied
the von Mises transformation to the physical-plane equations, whereas here the von Mises
transformation was applied to dimensionless -equations. Dimensionless variables simplify
and reduce appreciably the input required to run the program. Also some physical insight
into the flow problem and its relation to other flows is gained by using dimensionless
parameters and eliminating the confusion attributable to units.

In the dimensionless variables defined in the nomenclature and used in Ref. 2, the
boundary-layer equations considered were

IPTO) | IFTV) _ W
dx dy
1T — — - . _
J— — .(2):2 —
P Ly o 10 R P v )
Jx dy dx r <9y Reo,s aU/ay d 5
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_of _— o 1 9 ) | % p<av> ot
pPU—=+pV — == =\°T - =) —
dx dy r dy Pr Reo,s Pr, au/dy/ dy

o T e e
SO Do o Do D o
Re, s Pr/ = gy  9dU/dy Pry dy

1
P (2H oc))/23
Re = — = 4)

0,8 I‘Lo

T =T, % ycosg (5)

where the plus sign in Eq. (5) is for external flow and the minus sign for internal flow.
The quantity (2)1/2/Re, s as a coefficient of g in Eqs. (2) and (3) is due to using (H, , )! /2
to nondimensionalize velocities rather than (2Ho,w)1/ 2 the maximum velocity. Using
(2H, . )'/?2 would introduce new coefficients for other terms, which were thought to be
less convenient to handle. The (2)!/2 was used in Re, ,s simply for convenience in order
that Re, s be based on the maximum velocity.

In order to close this system of equations something must be done with the Reynolds
stress term. Rather than introduce the usual eddy-viscosity or mixing-length concepts, the
Reynolds stress was modeled here by relating it to the turbulent kinetic energy.

2.2 MODEL FOR REYNOLDS STRESS

Two forms are commonly used for modeling the Reynolds stress by relating it to
the turbulent kinetic energy of the flow. The first, introduced by Townsend (Ref. 3)
and refined by Lighthill (Ref. 4), written in the boundary-layer approximation, is

- <uv> = ae (6)

and the second, introduced by Prandtl (Ref. 5), is

- v = b(e)‘/zegﬂ (7
Y

where a and b are constants and £ is the mixing length. Equation (6), with a = 0.3,
was used in the present work. Both equations have been used by previous investigators.
For example, Bradshaw, Ferriss and Atwell (Ref. 6) used Eq. (6) with a = 0.3; Ng and
Spalding (Ref. 7) used Eq. (6) in equilibrium flow for evaluating a constant in the
dissipation term (a effectively was 0.32); and Glushko (Ref. 8) (recently extended by

10
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Beckwith and Bushnell (Ref. 9)) used a model which can be reduced to Eq. (7) over
a portion of the boundary layer. These approaches, as well as the present one, differ
primarily in the modeling of the terms in the turbulent kinetic energy equation which
is required for a solution for e.

2.3 TURBULENT KINETIC ENERGY EQUATION

The derivation of the particular turbulent kinetic energy equation used here begins
with the equation proposed by Kolmogoroff (Ref. 10), and used by Ng and Spalding
(Ref. 7), and is written for axisymmetric flow as

de de 1194 Y% o 0€ y o [0\ (CD P 63/2> (8)
WG E et et ) () - B
The terms in Eq. (8) on the left-hand side represent convection, and the first, second,
and third terms on the right-hand side represent the diffusion, production, and dissipation,
respectively. Glushko (Ref. 8) points out that at low Reynolds numbers the turbulent
energy dissipation deviates from that specified in Eq. (8). The reason for this has to do
with assumptions concerning the equilibrium of the turbulence at high wave numbers for
sufficiently high Reynolds numbers as explained by Batchelor (Ref. 11). Ng and Spalding
(Ref. 7) used Eq. (8) in conjunction with an additional equation in order to calculate
2'. However, besides the problem with the dissipation term, Ng and Spalding (Ref. 7)
did not use the molecular viscosity and did not integrate completely to the wall. In an
attempt to remedy these deficiencies, the following modifications were made to Eq. (8).
The numerator and denominator of the dissipation term in Eq. (8) were multiplied by
the integral scale length of turbulence &', in order to obtain a term el/2 2 common
to each term on the right-hand side of Eq. (8). Ng and Spalding (Ref. 7) used a proposal
of Kolmogoroff (Ref. 10) and Prandtl (Ref. 5) to relate el/2 &' to the Reynolds stress
by el/2 R' = - <uv>/0U/dy which is the form of Eq. (7). However, in the present work
the expression

Y%gr _ _ <uv> ®
U= Gy ®
is used in the diffusion and dissipation terms while retaining el/2 &' = - <uv>/oU/dy

in the production term. Equation (8) can then be written

de de 1 1 9 p<uv>\ de au Ce p<uv>
U+ Py =5 T oy [‘(“ B aU/ay)‘a—y]" PV Gy T L2 (“ B aU/ay> 19

where L is the dissipation length and C is a constant or a function of Reynolds number.
Equation (9) was not used in the production term in Eq. (8) because this term represents
the production of turbulent energy and would not be zero for e = 0 (laminar flow).

11
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Equation (10) is the turbulent kinetic energy equation used here. It is similar in
form to the equation developed by Glushko (Ref. 8). However, Glushko modeled the
Reynolds stress. more nearly like that given by Eq. (7), whereas in the present work the
Reynolds stress-is modeled by Eq. (6). Also, Glushko's modeling takes on three different
explicit forms across the boundary layer, whereas here Eq. (7) was used throughout the
boundary layer. This modeling was used for simplicity and can be justified only by the
results obtained. In dimensionless variables the additional equations used to close the system
composed of Egs. (1) through (5) are

_ = = - _
PTZ pVE - 2 200 |OR_ pele) O
dx dy O¢ T dy Re, o du/dy | dy
(11)
- p<uv QE_ Ce |"%p — fo'iﬁ}
3y 1% |Re,, du/dy
and
- <@ = a€ = 0.3% (12)
The expression used for C in Eq. (11) is
C =31~ (Re, ) 182 x 107° (13)

with a lower bound of 2.7. The reason for this particular expression will be made clear
subsequently when comparisons with experimental data are discussed.

Application of the von Mises transformation to the boundary-layer equations is given
in general form by Patankar and Spalding (Ref. 1) and in the present dimensionless
variables, except for the additional terms due to the Reynolds stress, in Ref. 2. Applying
this transformation to the turbulent kinétic energy equation, Eq. (11), gives (the necessary
partial derivative operators are given in Ref. 2)

— —_ - . —_2 .
g @ Ggpmg =M ¥ w95 1 9§ FUT 2% p<aw] ge
% + ¢E - <751 aco‘ o, ow Reo,s cﬁ]_/a? Jdw

(14)

U Ccef*E  p<aw
dy 12 |Reqs s 9U/dy

The boundary conditions for the governing system of equations are rather general,
and are those permitted by the numerical technique of Patankar and Spalding (Ref. 1).
In addition, boundary conditions on € are required which are taken as € = 0 at the wall

12
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and some prescribed free-stream turbulence level. If the turbulence is taken as€ = 0 across
the boundary layer, the governing equations describe laminar flow. If the turbulence
anywhere across the boundary layer is'e > 0, regardless of how small, the flow is turbulent.
That is, the degree of turbulence here is determined by the magnitude of &, and no
distinction is made between fully developed turbulent flow, transition flow, etc.

It should be pointed out that the calculation of mass flux into the boundary layer,
entrainment, is not handled as suggested in Ref. 1 for turbulent flow, because the
mixing-length approach is not followed. Rather, the same subroutine as utilized in Ref.
2 for laminar flow was used here for both laminar and turbulent flow. This permitted
extremely small to extremely large turbulent intensities to be handled using the same
entrainment calculation scheme.

24 COMPARISONS WITH EXPERIMENTAL DATA

For convenience, the ratio of the Reynolds number based on total conditions, Re,,
and the local unit Reynolds number, Re_, which is more commonly used, is given in
Fig. 1 as a function of Mach number. This ratio is based on isentropic flow and assumes
that u ~ T¥. The assumption u ~ T¥ was used in the present calculations with ¢ = 2/3.

102 T

This Plot Usesp ~ T

€ = 1/24
!

¢ =28+
& £=506 79

\ € =11 /
Reg s /
S, ol N
s ! ~ 7
N /,
D //,
S Y/,
A//
Asymptote for My << 1 P /
S I\
Reos . 1 ( 2 )IIZ_M
Reqs Mg \7-1
100 l i '
1071 . 10° 10!
Mo

Figure 1. Re, (/Re_ as a function of M_ for y = 7/5.

13
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However, it is not required, and any viscosity law can be used. Solutions presented in
Ref. 2 for thick laminar boundary layers with large transverse temperature gradients indicate
essentially the same results were obtained whether u .~ T® was used or Sutherland's law
was used. Therefore, it was assumed here that u ~ T¥ was adequate, particularly since
p is significant only over a small portion of a turbulent boundary layer. Figure 1 is
convenient for determining Re, ¢ because usually the free-stream unit Reynolds number
is known for a given free-stream Mach number.

The investigation by Winter and Gaudet (Ref. 12) provides a large number of subsonic
and supersonic data taken in the Royal Aircraft Establishment (R.A.E.) 8-ft by 8-ft wind
tunnel. These data are particularly useful for evaluating the present work in that the
development length was established and numerous detailed measurements were made at
various Reynolds numbers. Winter and Gaudet's subsonic velocity profile data at M_ =
0.2 for 16.4 x 106 < Re_y < 224 x 106 are compared with calculated profiles in Fig.
2. These data were relied upon for determining C in Eq. (11) as givén by Eq. (13). With

C taken as a constant of 3.5, c¢ varied from about five percent above the experimental

10~ o Experimental Data, Winter
and Gaudet (Ref. 12)
— Present Calculation

-6 .
Reg,x X 10°8= 16.4

Figure 2: Theoretical and experimental velocity distributions
at M_ = 0.2 and various Re_ .

skin friction data of Ref. 12 at Re_ = 106 to about ten percent below the experimental
data at Re_ x = 224 x 106. Also, the calculated velocity distribution with C = 3.5 differed
somewhat with the experimental velocity distribution for Re_x = 224 x 106. It was found
that if C were changed to about 2.7, then c¢ agreed with the experimental skin friction
data at Re_x = 224 x 106, and the calculated velocity distribution agreed with the
experimental velocity distribution. Of course, this agreement in velocities must be the
case next to the wall if the skin frictions are to agree; however, not all models attempted
for the various terms in Eq. (11) gave this quantitative trend. It was found that essentially
the same result was obtained whether C was taken as 2.7 or concocted to be 2.7 when

14
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Re_x = 224 x 106. Therefore, C was made to take on the proper value (proper value
here means giving good agreement with experimental data) at a smaller Re _ x and at Re_ x
= 224 x 106, and Eq. (13) was used in the present calculations with a lower bound
of 2.7. Actually, not a great deal of effort was expended in evaluating or improving C,
and surely an improvement could be made. However, the results provided by using Eq.
(13) were considered acceptable, and no further changes were made for C.

Comparisons between calculated and measured velocity distributions for the R.A.E.
tunnel (Ref. 12) are presented in Fig. 3 for M_ = 2.2 and 26.3 x 106 < Re_x < 108
x 106, Comparisons are also made with Mach number distributions in Fig. 4 for these
supersonic flow data. Considering that C was evaluated for subsonic flow, and Glushko's
L came from incompressible flow, the agreement between calculated and measured data
is considered good. The agreement improves as Re_x increases, with the maximum
discrepancy at Re_yx = 26.3 x 106.

S © Experimental Data, Winter
and Gaudet (Ref. 12)
— Present Calculation

-6
Regp, x X 1076 =

y, in.

Figure 3. Theoretical and experimental velocity distributions
at M_ = 2.2 and various Re_ .

For comparisons at higher Mach number the experimental data of Gates (Ref. 13)
at M_ = 4 are considered in Figs. 5 and 6. Two inflection points are evident in each
of the experimental Mach number profiles in Fig. 6. Similar inflection points exist in
the calculated Mach number profiles, although the profiles at x = 4.75 ft are in best
agreement. The solutions were obtained for a constant wall temperature of Tw /Ty, =
0.9 as indicated by a temperature versus distance along-the-plate plot as presented by
Gates (Ref. 13). However, the tabulated profile data in Table IV of Ref. 13 indicate
Tw/To,. = 094 for the data at x = 2.75 ft in Figs. 5 and 6, which might cause some
discrepancy. For the same reasons as mentioned in discussing the R A.E. M_ = 2.2 data
of Winter and Gaudet (Ref. 12), the agreement in Figs. 5 and 6 is better than expected.
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51 © Experimental Data, Winter
and Gaudet (Ref. 12)
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Figure 4. Theoretical and experimental Mach number distributions
at M_ = 2.2 and various Re_,.
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Figure 5. Theoretical and experimental velocity distributions
atM_=4,
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Lo Flat Plate Experimental Data of Gates (Ref. 13)
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Figure 6. Theoretical and experimental Mach number distributions at M_ = 4.

3.0 ANALYTICAL RESULTS FOR TURBULENT FLOW NEAR A WALL

Of interest here is that portion of a turbulent boundary layer which extends, in
a normal direction, from the wall out into the fully turbulent region. Included are the
so-called viscous sublayer and buffer layer which are understood to extend over y* values
of about 0 to 5 and 5 to 35, respectively.

This portion of the boundary layer has been investigated previously and summaries
of these investigations, with the known exception of the work by Rannie (Ref. 14), are
given in the books by Hinze (Ref. 15) and White (Ref. 16). The approach of these
investigators included that of assuming velocity distributions in this region, developing
empirical expressions for the eddy viscosity, or employing Prandtl's mixing-length
hypothesis with various modifications near the wall. With the exception of simply assuming
a functional form of the velocity distribution, none of the previous investigations lead
to closed-form expressions for the velocity except that of Spalding (Ref. 17); the same
expression was obtained later by Kleinstein (Ref. 18). Spalding (Ref. 17) developed an
expression by satisfying the familiar logarithmic velocity distribution in the fully turbulent
portion of the boundary layer and then matched this result to an expression, obtained
by inspection, which satisfies Reichardt's (Ref. 19) requirement that the eddy viscosity
vary proportionally to y raised to at least the third power as y becomes small.
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Whereas Spalding's (Ref. 17) result for the velocity distribution is accurate and is
in closed-form, van Driest (Ref. 20) obtained one apparently as accurate by quadrature.
Surprisingly, the latter is perhaps more frequently used. This seems to be attributable
to the popularity of van Driest's (Ref 20) physical development whereby he derived a
damping factor for Prandtl's mixing length near a wall.

With regard to these previous investigations, the present work is of interest because
(1) the approach is not founded on an eddy-viscosity or mixing-length concept; (2) the
functional forms for the velocity and Reynolds stress distributions are not postulated but
result from the analysis; (3) simple closed-form expressions are obtained for the velocity,
Reynolds stress, turbulence production, and direct mean-flow energy dissipation; and (4)
the results are in good agreement with experimental data. The approach is to model the
Reynolds stress by relating it to the local turbulent kinetic energy of the flow. The
momentum equation, and the turbulent kinetic energy equation developed in the previous
section, are solved analytically in the region near the wall. These results are used to obtain
anialytical expressions for the various mean-flow turbulent quantities.

The expression used for the turbulent kinetic energy is that given by Eq (10), and
is, for two-dimensional flow

(_9_8 ae_ 1 9 _p<uv> QE‘ a_U_Q ~p<uv>
PU 5, + pVg "oy [(y 8U/8y> ay] p<uv> 3y T L2 (u _—6U/6y> (15)
Using
T o= g—g ~ p<uv> (16)
Eq. (15) becomes
Ge  yde 1 Ofrdedy) o 0u ce T
Pl PV Sy "ol ay<aU/ay) Pewv> 5y T L2 au/dy a7

It is hypothesized that e is an explicit function of U only. Then, Eq. (17) can be written

au oU\ de 1 0 de au E_e_ r
(pU 8_; + PV 'a—y-)a—ﬁ = ;—; a‘ (7' -d—ﬁ -— p<uv> a—y— - L2 _—aU/a)' (18)
Using the zero-pressure gradient momentum equation

a_U ou or (19)

pUax+pV'——y—=—
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and taking o, = 1, Eq. (18) simplifies to

T — - p<uv> -~ Eg —L SR 0 (20)
dU L* (dU/dy)

The dissipation length L in the last term in Eq. (20) was taken from Glushko's report

(Ref. 8). Because L was originally taken from experimental data and behaves somewhat

as a mixing length (see Ref. 8), this length is eliminated by assuming it was originally

related to the Reynolds stress by -<<uv> ~ L2 (9U/dy)?. Absorbing the constant of

proportionality in the constant, C, Eq. (20) becomes

42
d
° - p<uv> — Cer
dU2 - <uv>

7

(21

To obtain closure, the Reynolds stress is modeled by relating it to the turbulent
kinetic energy of the flow according to Eq. (6). An exact value for the constant in Eq.
(6) is not important here; rather, the significance of Eq. (6) is that the Reynolds stress
is assumed proportional to the local turbulent kinetic energy. Equation (21) can then
be written

2
O (22)
dU

where a and f are constants and a? was written for later convenience.

Equation (22) is not restricted to the region near the wall nor to incompressible
flow. However, rather simple and useful results can be obtained by making two assumptions,
(1) incompressible flow ‘and (2) 7 is independent of y and is equal to 7y . The second
assumption is common and not without some justification. For example, consider Eq.
(19). At the wall, with no-slip boundary conditions, one has that dr/dy = 0. Differentiating
Eq. (19) one obtains

2 9%u 9% 9u (du 9V
:—y;=p[U5—y8_x+vﬁ+5;f—<é_;+5‘y—>] (23)
The first two terms on the right-hand side of Eq. (23) are zero at the wall because of
the no-slip boundary conditions. The third term is zero by the continuity equation.
Therefore, the first nonzero term for 7 - 7, must be at least -of order y3, and has no
y or y2 term in zero-pressure gradient two-dimensional flow as sometimes assumed, e.g.
Ref. 21. Using these two assumptions of incompressible flow and 7 independent of y (7
= 7w), Eq. (22) can be written
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S «’FE = 8 (24)
dut
where
E - e
2 (25)
and
U
+ - 2
T (26)

The boundary conditions used for Eq. (24) are E = 0 at u* = 0 and dE/du* =
0 at ut = 0. A boundary condition near the outer edge of the layer is not used because
Eq. (24) is valid only in the vicinity of the wall because of the assumption of 7 being
independent of y. The boundary condition dE/du* = 0 at u* = O represents the behavior
of the numerical solutions of the previous section near the wall, simplifies the final results,
and contributed to yielding a physically reasonable turbulent kinetic energy solution across
the entire boundary layer. Final justification for this boundary condition is based on the
quality of the results obtained. Using these boundary conditions, the solution to Eq. (24)
is

E = —‘82 [1 = cos (auh)] (27)

a

With 7 = 1, Eq. (16) can be written in dimensionless variables as

dut 1 E
— =1-a 28
" (28)
Using Eq. (27), Eq. (28) can be written
+
L1 B cos (@) (29)
dy* a

Equation (29) can be integrated directly to give y* as a function of u* if the magnitude
of the constant aB/a? is known, see e.g. Gradshteyn and Ryzhik (Ref. 22). To this end,

consider the fact that in the fully turbulent region one has that ape, =~ Tw (where ep

is the maximum or peak in the turbulent kinetic energy distribution). Therefore, in
dimensionless variables

aEm+g2=1 . (30)
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where €2 is a small positive quantity. That €2 is a small positive quantity is a consequence
of Eq. (28) in conjunction with the fact that E > 0 and the physical reasoning that
dut/dy* > 0 for a smooth, impermeable wall. Then, using Eq. (27) to obtain E,, = 28/a2,
gives

a 1 62
L 31)

a

(3]

and Eq. (29) becomes

2 2

1 —- ¢
2

dut 1 + €
2

cos (qu™) (32)

Using the fact that 0 < €2 < 1, and satisfying the wall boundary condition of u* =
0 at yt = 0, Eq. (32) can be integrated (Ref. 22) to give

+
yt = ei tan”! \:e tan (%—):‘ (33)
a

Consider the limiting result of Eq. (33) for small u*. Neglecting terms of third order
in u*, Eq. (33) gives

y+ = ut 34)

which is, of course, the classical sublayer result. Away from the wall, the velocity
distribution depends on the values of € and a. The constant a can be determined by
using Eq. (27) to force the peak in the turbulent kinetic energy distribution to correspond
to experimental data or to the numerical solutions of the previous section. It can also
be determined by taking e = 0, which corresponds to the assumption of apey, = 7y,
integrating Eq. (32), and then determining the value of a which gives best agreement
with experimentally measured velocity distributions near the wall. Fortunately, the value
of a obtained by any of these methods is about the same, and is, a = 0.18. With the
constant a determined, ¢ can be obtained most easily by fitting Eq. (33) with experimental
data at the value of u* where au* = 7, in which case € = w/ay* according to Eq. (33)
for au* = 7. A reasonable value of € appears to be € = 1/8. Therefore, Eq. (33) becomes

y+ = 0_866 tan'1 [% tan (0.09 u+):l (352)

Note that for u* > 7/0.18, a change of quadrants must be made, and

= 5709 {17 + tan™! I} tan (0.09 u+)]}for ut > 7/0.18 (35b)
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The result corresponding to € = 0 is more simple than the expressions above and is given
by

1
y* = 5og ten (0.09 u) (36)

Comparisons of the velocity distributions according to Egs. (35) and (36) are
compared with the experimental data of Lindgren (Ref. 23) in Fig. 7. Good agreement
exists between Eq. (36) and the experimental data for y* less than about 100, and poor
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Figure 7. Velocity distributions according to Egs. (35) and (36) and the
experimental data of Lindgren (Ref. 23).

agreement exists for y* > 100. For Eq. (35), good agreement is obtained up to y* of
approximately 200, and then poor agreement for y* > 200. Recall that Eq. (36) requires
ape, = Ty, whereas Eq. (35) does not have this restriction. However, both Egs. (35)
and (36) require that 7 be independent of y, which is not the case in the outer part
of the boundary layer. The discrepancy between Eq. (35) and the experimental data in
Fig. 7 for y* > 200 is, therefore, attributed to the assumption of 7 = 7, , and the discrepancy
between Eq. (36) and the data for y* > 100 is attributed to the same assumption plus
the additional restriction of requiring ape,, = 7. Equations (35) and (36) do, however,
provide simple and accurate expressions for the velocity distribution throughout the viscous
sublayer and buffer layer and into the fully turbulent portion of the boundary layer.
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An expression for the Reynolds stress can be obtained by using Eq. (16) with 7
= 7 and either Eq. (35) or (36) for the velocity distribution. The expression resulting
from using the more simple velocity distribution, Eq. (36), appears to be sufficiently
accurate, and is given by

+,2
- <uv> T N 0.09™"
= sin” [tan™ (0.09 y")] = —M—Mm——
3 1 4+ (0.00y")2 37)

U

Equation (37) is compared in Fig. 8 with the experimental data of Laufer (Ref. 24) and
Klebanoff (Ref. 25) and that calculated by van Driest (Ref. 20) using his damping factor
concept. The low Reynolds number data of Laufer (Ref. 24) are slightly below the other
data in Fig. 8 for y* larger than about 30. However, the agreement in Fig. 8 is considered
good.

1.0
0.9 |-
0.8 |
07}
0.6 |-
'<UV> 0 5 -
Urz Sym Source Ref.
04 o Pipe, Reg ¢ =5x 10 Laufer (Ref. 24)
‘ o  Pipe, Reg ¢ =5x10% Laufer (Ref. 24)
0.3 a  BoundaryLayer, Reg = 7.4x 10" Klebanoff (Ref. 25)
-=-=(Calculated van Driest (Ref. 20)
0.2 — Eq. B Present
0.1
0 | | | | | | | |
0 10 2 30 4 5 6 0 8 9%
y

Figure 8. Reynolds stress distributions near a wall.

Schubauer (Ref. 26) considered the measurements of Laufer (Ref. 24) and Klebanoff
(Ref. 25) for investigating certain turbulent processes in pipe and boundary-layer flows.
Schubauer (Ref. 26) points out that the most important outcome of the investigations
of Refs. 24 and 25 is the revelation that the region near the hypothetical sublayer is
one of high activity for turbulence. Schubauer (Ref. 26) presents a plot of the turbulence
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production and dissipation measurements of Laufer (Ref. 24) and Klebanoff (Ref. 25).
This plot is reproduced in Fig. 9 along with the present predictions of the quantities
measured using Eq. (36) for the velocity distribution. The present results for the quantities
considered by Schubauer (Ref. 26) are, for the turbulence production ‘

2
+ +
—<uv> du” 1 sin? [2 tan™! (0.09 yM] = <__0_09y—_) (38)

9 P
u?  dy 1 + (0.09yD2

and the direct dissipation of mean-flow energy

+\ 2 2
(““+> — cos? [tan"? (0.00 y1)] =<—-1—_> (39)
dy 1 + (0.00y")2
Sym Source Ref.
o e Pipe Flow, Req ¢ =5x 10° Laufer (Ref. 24)
o = Pipe Flow, Reg o=5x 108 Laufer (Ref. 24)
10 a & Boundary Layer, Reg = 7. 4x10% Klebanoff (Ref. 25)
09 L --= Eq. 38) Present
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Figure 9. Distributions of turbulence production and direct dissipation
of mean-flow energy.

Schubauer (Ref. 26) points out that the maximum rate of production occurs at what
is normally considered the edge of the sublayer, and that direct dissipation and turbulence
production go on at the same rate at this point. According to Eq. (38), the location
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of the maximum rate of production is y* = 11.1 which is approximately the edge of
the sublayer. This is also the location where the direct dissipation according to Eq. (39)
is equal to the production. Good agreement between Egs. (38) and (39) and experimental
measurements is demonstrated in Fig. 9.

4.0 ANALYTICAL RESULTS FOR VELOCITY-TEMPERATURE RELATIONS*

Relations between velocity and temperature in boundary layers were obtained in the
early 1930's by Busemann (Ref. 27) and Crocco (Ref. 28). These results provide a
convenient means of expressing temperature as a function of velocity, and countless
applications of these early works have since been made in the study of gas dynamics.
It is interesting to trace the development of the velocity-temperature relations, inasmuch
as there seems to be some discrepancy among the users of these relations as to the original
investigators and their specific assumptions and results.

The first relation between velocity and temperature appears to be that of Busemann
(Ref. 27), who obtained the solution

e, T + U%/2 = const = ¢y To o (40)
for laminar flow and Pr = 1. For this case, of course, one must have Ty, = T, . Shortly
after this result by Busemann, Crocco (Ref. 28) presented the solution ”

¢, T + U2/2 = aU + const (41)

(where ais a constant) for turbulent flow and Pr; = 1. It is frequently misconstrued that
Crocco's (Ref. 28) result, Eq. (41), was obtained for laminar flow; however, Crocco (Ref.
28) explicitly states that his consideration is that of the equations for the turbulent
boundary layer. Crocco (Ref. 28) references Busemann's (Ref. 27) work, and later Crocco
(Ref. 29) states that Busemann's (Ref. 27) result was actually the particular solution portion
of Eq. (41) corresponding, to what is presently called, an adiabatic wall. Later, Busemann
(Ref. 30) obtained the same general result as Crocco (Ref. 28), Eq. (41), but for laminar
flow and Pr = 1. Evaluating the constants of integration in Eq. (41) by using the wall
and free-stream conditions, one obtains

ST W - (T, - T) T (42)

*The work in this section was done in collaboration with Dr. M. D. High, ARO, Inc.
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for either laminar or turbulent flow with the appropriate Prandtl number being unity.
If the wall is adiabatic, then Ty, = T_ + U_2/2c,, and Eq. (42) reduces to Eq. (40).

E. R. van Driest (Ref. 31) later investigated the problem by considering a variable
Prandtl number across a turbulent boundary layer. He obtained general expressions for
the temperature as a function of velocity, Reynolds analogy factor, and recovery factor.
These general expressions require distributions of Prandtl number and shear stress across
the boundary layer which van Driest evaluated by following von Karman's (Ref. 32) idea
of separating the boundary layer into three regions, each using different Prandtl numbers
and shear stress distributions. This analysis provided quite reasonable results, illustrated
the effect of Prandtl number, and showed that the local total temperature must exceed
the free-stream total temperature near the edge of the boundary layer for adiabatic flat
plate flow with nonunity Prandtl number.

Walz (Ref. 33) and Michel (Ref. 34) have investigated the problem along the lines
of van Driest (Ref. 31). By making certain approximations to the general expressians of
van Driest (Ref. 31), for example, Michel (Ref. 34) points out that if shear stress and
Prandtl number were taken as constant, one obtains

T = T + (Taw - ‘TW)ﬁ - (Taw - TN) Tl-z (43)

w
where the adiabatic wall temperature appears in the definition of the recovery factor
pe 2 (44)

It is pointed out by Schiichting (Ref. 35) and Michel (Ref. 34), for example, that Eq.
(43) follows directly from Eq. (42) simply by introducing T,y in place of T, , because
To,. in Eq. (42) is actually T,y for unity Prandtl number. Equation (43) is frequently
referred to as the modified Crocco law, and it is the same as Eq. (15.19) in Schlichting
(Ref. 35).

A parameter frequently used for presenting temperature data is T = (To - Ty )/(T
- Tw). From Eq. (42) one obtains

0 500

T=1 ' (45)

Note that Eq. (45) is for unity Prandtl number because of the same restrictions on Eq.
(42). For an adiabatic wall Ty, = T,y = T, and from Eq. (40) T, = T,,, = T,y and
- T is undefined. From Eq. (43) for an adiabatic wall, i.e., T,y = Ty, one obtains the
quadratic form
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T-% | (46)

which does not require unity Prandtl number. However, Eq. (46) does not conserve energy
across the boundary layer for nonunity recovery factor. This is easily seen by considering
the total energy integral equation (see for example Shapiro (Ref. 36)), which for an
adiabatic flat plate flow can only be satisfied if T, takes on values in the boundary layer
that are both less than and greater than T, . 1:€., there must be total-temperature
"overshoot". It is clear that T, can never be greater than T, _ according to Eq. (46)
assuming u < 1.

Meier (Ref. 37) recently made an interesting investigation of temperature distributions
in turbulent boundary layers by considering a mixing-length hypothesis to describe a
variable Prandtl number through the boundary layer. A somewhat similar analysis for the
variable Prandtl number was carried out by Cebeci (Ref. 38). A variable Prandtl number
approach certainly seems warranted in view of the rather extreme variations in Prandtl
number which have been observed experimentally, e.g., see Refs. 39 and 40. However,
Meier's (Ref. 37) approach to predicting velocity-temperature relations does not conserve
momentum or energy, does not satisfy the boundary condition at the edge of the boundary
layer, requires numerical solutions, and involves nine initial variables and parameters. It
would appear that results obtained using, for example, Refs. 37 and 38, for a variable
Prandtl number description near the wall in van Driest's (Ref. 31) general expressions
for a variable Prandtl number analysis, would be more appropriate. Unfortunately, such
solutions would likely need to be carried out numerically, which would limit their practical
applications for such purposes as data reduction.

The objective of the present work was to obtain an analytical description of the
temperature as a function of velocity throughout a turbulent boundary layer for constant
but nonunity Prandtl number. The approach was to use the equation resulting from
combining the boundary-layer momentum and energy equations and model the local
shear stress by expressing it as a function of the local turbulent kinetic energy in the
boundary layer. A second-order, nonlinear, ordinary differential equation results, for which
zeroth- and first-order perturbation solutions were obtained for temperature as a function
of velocity in terms of the assumed small parameter € = 1 - Pry. Crocco's (Ref. 28)
result, Eq. (42), is recovered identically by the zeroth-order solution. A Reynolds analogy
factor is also calculated from the present solution.

4.1 DEVELOPMENT OF THE BASIC EQUATION

The starting point of this analysis is the equation obtained by making the proposition
that temperature is a function of velocity only, T = T(U), and then combining the
boundary-layer momentum and energy equations (see, for example, page 342 of Schlichting
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(Ref. 35)). It is shown in Schlichting that the proposition is correct if (1) the pressure
and wall temperature gradients are zero and the Prandtl number unity or (2) the wall
is adiabatic and Prandtl number unity for nonzero pressure gradient. Because the present
approach is to obtain solutions for Prandtl numbers near unity, it is assumed that the
solutions are approximately correct for conditions (1) and (2) above for near unity Prandtl
numbers,

The boundary-layer equations considered consisted of both the laminar and turbulent
contributions to viscosity and thermal conductivity. van Driest (Ref. 31) considered these
same equations, and obtained for constant mixed Prandtl number, Pr,, the expression

a2n 1 dr dh

2
— + (1= P — —+ Prly - DM_ = 0 47

Equation (47) is valid for dp/dx = 0, or for Pr, = 1 and adiabatic wall if dp/dx #
0. The shear stress in Eq. (47) is comprised of both a laminar and turbulent portion.
Again, the Reynolds stress is related to the local turbulent kinetic energy, €, in the boundary
layer by Eq. (6). By fitting analytical approximations to numerical solutions and
experimental data for e, for values of y larger than the y corresponding to the location
in the boundary layer of maximum e (eyax) as predicted by the numerical solutions,
the expression

e

= exp (~ep¥'?) (48)

emax

was obtained as an approximate analytical fit where n = y/§ and c is a constant equal
to 4. An example of the quality of fit is given in Fig. 10 by comparison with the present
numerical solutions and the experimental data of Klebanoff (Ref. 25). Using Eq. (48),
the expression

T = Uf p exp (—~C775/2) (49)

was obtained for an approximation to the total (laminar and turbulent portions) shear
stress distributions where U2 = 7y /py.

Using Eq. (49) for the shear stress, and considering the terms containing 7 in Eq.
(47), one obtains

1 dr d 5/2 ldp d 5/2 1 dh
_——— == e— o C + - — = — = L a1 50
7 & du (=en™ ) P du dﬁ( e % du (50)

28



AEDC-TR-76-62

In order to eliminate n from Eq. (50), it was assumed that U = n!/m for this term. This
assumption is justified only by the final results (a value of m = 7 was used for the present
results). Equation (50) can then be used in Eq. (47) to obtain

a%h 5 'Z_""l 1 dh \dh :
- - 2 em 1 dh}dh 2
dﬁ_“z 1 - Pr) 5 om U + N Frd Pr.(y = DMZ = 0 (51
2.4 o Experimental Data, Klebanoff (Ref, 25)
Present Numerical Calculation of
Section 2.0
2.0 |- —=~ FromEq. (48)

0 l | | ! L
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Figure 10. Theoretical and experimental turbulent
kinetic energy distributions.

Introducing € = 1 - Pr, and the terms as defined in the nomenclature, Eq. (51) can
be written

o -~ —
— d%h Cwll T gg) dh _
h da2 — E(ﬁ u a h + = ﬁ + (1 - G)Ah =0 (52)

which is the basic equation.
4.2 CONSTANT WALL TEMPERATURE SOLUTION

Equation (52) is a second-order, nonlinear, ordinary differential equation for h(u).
This equation was not solved in closed form. Zeroth- and first-order perturbation solutions
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were obtained in terms of the small parameter €. The boundary conditions for the constant
wall temperature problem are

k(o) = Fw and (1) = 1 (53)

Assuming a solution of the form

k@) = Fo(ﬁ) + eHl (@ + - 54)
one obtains to zeroth order
4%
5 = -A (55)
du’
and to first order
o= . - = \2
d“h dh dh
1 _ —q-1 _ ° _}_ o
?_,Bu = +Ko <d3> + A (56)

The boundary conditions given by Eq. (53) become

b(0) = &, hy() = Tandhy(o) = 0,hy(1) = 0 (57)

The solution to Eq. (55) for the zeroth-order boundary conditions in Eq. (57) is

B,@ =, +@, - § )T - 5 (58)

Equation (58) was used in Eq. (56) to solve for Tll (u). The integration was tedious but
straightforward. The first-order boundary conditions in Eq. (57) were satisfied by the two
integration constants from Eq. (56), and the solution h; (u) was included in Eq. (54)
along with Eq. (58) to obtain, up to first order, the solution

_a+l

B = R, +@, - B)5 - 5%+ 6[___/3_1*3_ (1~ 3 )

@+ Dia + 2)

_ B<Ho,m-—hw>_‘f(1 i 2 A5 9 s (A - i) + w() - f(ﬁ)] (59)
ala + 1) 2
where
£@) = %[(g ~ M|l = A - (& + A In|¢ + Al (60)
(=W, -Fk, -A% . (61)
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and
A= [2Ah, +(H, - FW)2]% (62)
4.3 ADIABATIC WALL SOLUTION

‘The boundary conditions for the adiabatic wall problem are

dh
dw

= 0andh(l) = 1 (63)

u=0

Assuming again the form of the solution given by Eq. (54), the same zeroth- and first-order
equations, Eqgs. (55) and (56), were obtained. The appropriate boundary conditions become

_ dhy
 0f,(1) = 1 and —

(o]

u

_ =0,k =0 (64)

u=0

u=0
The solution to Eq. (55) for the zeroth-order boundary conditions in Eq. (64) is
@ =1+20 - (65)

As before, hy (u) was obtained by using the solution for h,(u), Eq. (65), in Eq. (56)
and satisfying the first-order boundary conditions in Eq. (64). The complete solution,
up to first order, is

M@ = 1+ 20 =)+ e[(—a:_l%ﬁj? Q- s 2aow . - f(ﬁ)] (66)

where
(@ - SLC-Mn &= Al = €+ AL + A] (67)
= - AT (68)
and
A = (2AH, )% (69)

44 REYNOLDS ANALOGY

The derivation of the Reynolds analogy factor s is straightforward, and for the
boundary-layer equations considered is given by (Ref. 31)

31



AEDC-TR-76-62

cf 1Drm( aw Kw)
s = = =
2ch dh (70)
dufu=0

Values of s were obtained by using Eq. (59) for h(u) in Eq. (70). The term dh/dulg=¢
was found not to approach zero at the same rate as (h,,, - hy ) for near-adiabatic wall
conditions for all Mach numbers, and a singularity occurred at h,, = h,w. However, quite
reasonable values of s for hy, both greater than and less than h, , were obtained and
will be compared with experimental data.

45 COMPARISONS WITH EXPERIMENTAL DATA

To apply the analytical velocity-temperature results, it is necessary to know the Prandtl
number. Specific values of the turbulent Prandtl number have been suggested by van Driest
(Ref. 31) as Pr; = 0.86, Bradshaw (Ref. 41) as Pr; = 0.91, and Elser (Ref. 42) as Pr;
= 0.921. However, as mentioned, experiments (Refs. 39 and 40) indicated that Pr; varies
from above one near the wall to about 0.5 or 0.7 at large distances from the wall. These
data have a relatively significant amount of scatter as might be expected due to the
experimental difficulties. Because the variation in experimental recovery factors is less than
in experimental Prandtl numbers, it was decided to determine Pr, by assuming a constant
r and calculating Pry, using the adiabatic wall solution. It was assumed that the Prp,
determined by this procedure was also applicable to nonadiabatic wall conditions. This
calculation was carried out by using Eq. (66) with u = 0 and Eq. (44) to provide two
equations for the two unknowns Pry and h,y (or T,y ). The values of Pr, determined
in this way are presented in Fig. 11 for r = 0.87, 0.88, 0.89, and 0.90. Available values
of experimental recovery factors seem to indicate a value of r = 0.88 as being representative,
and this value was used for the present results. For r = 0.88, 0.800 < Pr, < 0.914
for all Mach numbers. For M_ > 2.5, the Prp from Fig. 11 for r = 0.88 is essentially
bounded by the suggested turbulent Prandtl number values of van Driest (Ref. 31) and
Bradshaw (Ref. 41).

Some of the velocity-temperature results are presented in u - T coordinates. It should
be pointed out that T is a sensitive parameter. For example, for an adiabatic surface
in moderate supersonic flow T = (To/To,.. - Taw/To, )/(1 - Taw/To,.), and (1 - Toy /To,.)
is of the order 1/10. Therefore, if a T,/T,,, overshoot of one percent occurs, the result
is a ten percent, or order of magnitude more overshoot in T. The adiabatic wall solution,
Eq. (66), is presented in Fig. 12 for v = 7/5 and various M_ (actually, rather than vy
and M_, A = (y-1)M_2 is the appropriate parameter). The overshoot in T decreases as
M_, increases, a result to be checked subsequently by comparison with experimental data.

32



AEDC-TR-76-62

1.0
r=0290

0.89

0.88

0. 87:\\
0.9

Prm

0.8 F
0.7 | ] ] ]
0 5 10 15 20

My

Figure 11. Mixed Prandtl number as a function of M_ for v = 7/5.
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Because the present result is an approximate analytical solution with constant Prandtl
number, it was of interest to compare these analytical results with numerical solutions
to the full boundary-layer equations including laminar and turbulent terms with variable
Prandtl number. This seemed particularly warranted in view of the recent results of Meier
(Ref. 37). A comparison is presented in Fig. 13 between Eq. (66) and numerical results
provided by Adams (Refs. 43 and 44) for v = 7/5, M_ = 4, and adiabatic wall, using

————— Numerical Results of Adams with
Cebeci's (Ref, 38) Variable Prandtl Number*
—-——Numerical Results of Adams with
‘ Constant Prandtl Numbers of 0. 88°
Eq. (66) with Prp, =0.88

—{

Figure 13. Velocity-temperature relations for
constant and variable Prandtl number,
adiabatic wall, M_ = 4, and v = 7/5.

constant laminar and turbulent Prandtl numbers of 0.88 and also the variable turbulent
Prandtl number description of Cebeci (Ref. 38) with Pr=0.71. (Adams' calculation scheme
was used because of its variable Prandtl number capability. The numerical scheme discussed
in Section 2.0 was run for constant Prandtl numbers of 0.88 for comparison with Adams'
results, and the results were essentially identical.) According to Adams¥*, the
inflections in the numerical results for the variable Prandtl number for u > 0.6 were
sensitive to the modeling of the variable Prandtl number. Because of the rather significant
size of the uncertainty envelope near the wall of the experimental data used to qualify
the variable Prandtl number analysis of Cebeci (Ref. 38) (attributable to experimental
difficulties extremely close to the wall), and because almost the entire boundary layer

*Unpublished data furnished by J. C. Adams, Jr., VKF, AEDC.
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corresponds to u > 0.6 for a turbulent boundary layer, the agreement in Fig. 13 between
the more exact numerical results and the approximate analytical result, Eq. (66), is
considered good. Included in Fig. 13 are the linear and quadratic results given by Egs.
(45) and (46). In addition, an analog computer solution was obtained for Eq. (52) for
these conditions, and the results cannot be discerned from the result given by Eq. (66)

in Fig. 13.*

Experimental adiabatic (or nearly so) wall data of Gates (Ref. 13) for M_ ~ 4 and
Voisinet (Ref. 37) and Voisinet** for M_ = 3 are compared with Eq. (66) for M_=3.51in
Fig. 14. It should be pointed out that Gates' temperature data were interpolated for u
less than about 0.65, but were measured for u > 0.65. This limitation was due to probe
size. Voisinet's data were taken with a fine-wire temperature probe (Ref. 45) and do not
have this restriction. The wiggle or inflection point in these data near u of 0.6 is similar
to the predictions of Meier (Ref. 37) and Adams using a variable Prandtl number through
the boundary layer. According to Voisinet**, this trend was repeatable in the experiments;
however, the absolute value of the data in terms of T might not

sym Mo Ref. Model
o 411 37 Flat Plate
o 3.9 37 Boundary-Layer Channel
a 20
o 2
3

Figure 14. Theoretical and
experimental
velocity-temper-
ature relations
for M_, of
approximately T
3 to 4 and
adiabatic walls.

*This analog computer solution was provided by J. A. McClure, ARO, Inc.
**Unpublished data furnished by R. L. P. Voisenet, Naval Ordnance Laboratory, June 1974.
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be precisely repeatable. For example, a one-Kelvin-degree change in the measured local
total temperature near u = 0.6 would produce a 15-percent change in T for the conditions
of these data. Such sensitivity should be kept in mind when considering data in u - T
coordinates.

Experimental data similar to those in Fig. 14, except for M_ being approximately
5 and 6, are compared to Eq. (66) for M_ = 5.5 in Fig. 15. The quality of agreement
between experiment and theory is about the same as obtained in Fig. 14, which is
considered reasonable.

M

Sym "o Ref. Model
o 4.9 46 Wind-Tunnel Nozzle
a 6,02 47 Hollow Cylinder
o 4.8 13 Boundary-Layer Channel
o 4.9 13 Boundary-Layer Channel
1.2¢- — 5.50 Eq. (66)

Figure 15. Theoretical and experimen-
tal velocity-temperature
relations for M_ of
approximately 5 to 6
and adiabatic walls.

0.2 L L | [ ]

cl

Mention should be made of the data of Sturek and Danberg (Refs. 48 and 49) which
were used by Meier (Ref. 37) for the selection of constants which appeared in his work.
Sturek (Ref. 49) states that these measurements were made in essentially adiabatic flow
after 25 to 30 minutes of run time, and no heat-transfer effects were expected to appear
in the data. These data, however, were shown by Sturek (Ref. 50) to exhibit an extreme
"dip" in T for u ~ 0.6. Except for the downstream adverse pressure gradient these
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measurements correspond to conditions similar to those of Voisinet, although Voisinet's
measurements were made with a fine-wire probe (Ref. 45) and Sturek's (Ref
49) measurements were made with a wedge-type probe. Sturek and Danberg (Ref. 48)
present temperature data to within 0.0028 in. of the wall. However, the wedge-type probe
used was stated (Ref. 49) to be 0.010 to 0.015 in. thick at the tip where the measurement
was made. Therefore, some of the data near the wall were interpolated or extrapolated.
Moreover, the location of the dip in T corresponds to the approximate location of wall
influence on probe measurements for this size probe as determined by Allen (Refs. 51 and
52). Because Sturek's data correspond to approximately the same flow conditions as
Voisinet's, e.g. a Mach number of 3.5 for Sturek's data as compared to 2.9 for Voisinet's
data, only the latter are considered here.

Diabatic, zero-pressure gradient data of Danberg (Ref. 53), Hopkins and Keener (Ref.
54), and measurements made by Adcock and Peterson and reported by Bertram and Neal
(Ref. 55), are compared with Eq. (59) in Fig. 16. The cold-wall results, both calculated
and measured, tend to be more linear in u - T coordinates and have less or no T overshoot.
The calculated curves in Fig. 16, for the two conditions indicated, essentially bound the
curves which would correspond to the conditions of the other data in Fig. 16.

Sym Mo Tyl 0,0  Ref. Model

°o 631 055 53 Flat Plate

o 634 078 53 Flat Plate

© 650 0.268 54 Flat Plate

o 650 0.446 54 Flat Plate

& 600 038 55 Hollow Cylinder

o 600 049 55 Hollow Cylinder
6.50 0268 Eq. (59

L2

""" 6.34 078 Eq (59

Figure 16. Theoretical and experimen-
tal velocity-temperature
“relations for M_ of 6.0 to
6.5, nonadiabatic walls,
and zero pressure gradient. =
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As alluded to, increasing T overshoot for the same u is predicted by the present
results for decreasing M_ and adiabatic wall. This result is qualitatively supported by the
data of Winter and Gaudet (Ref. 12) as shown in Fig. 17.

L4 M

Sym Mo Ref.
° 08 12
o

Figure 17. Theoretical and experimental
velocity-temperature relations
for M_ of 0.8 and 2.2 and
adiabatic walls.

An interesting comparison between predicted and measured temperature distributions
as a function of Mach number is presented in Fig. 18. These data were used by Winter
and Gaudet (Ref. 12) to obtain a reliable relation between local temperature and Mach
number for 2.2 < M_ < 6.0. The present analytical result for M_ = 2.2 is shown in
Fig. 18. There is an effect of M_ on the present result, causing it to move toward the
modified Crocco result (the linear curve) as M_ increases. However, this effect is slight
over the M_ range of the data in Fig. 18, and the M_ = 2.2 result provides a lower
bound and yet is in relatively good agreement with the experimental data.

Some results on Reynolds analogy according to Eq. (70) are given in Fig. 19. The
singularity which occurs in Eq. (70) at Ty, /T,y = 1 appears to influence the solution
only in a region near Ty, /T,w = 1. This observation is based on the fact that if the
region near Ty, /T,w = 1 is excluded, then a smooth curve can be faired through this
region which asymptotically joins the results for Ty, /T, <1 and Ty /Taw > 1. However,
the results for small values of Ty, /T,y are of primary interest here, because this particular
distribution does not appear to have been previously predicted.
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Figure 18. Theoretical and experimental Mach number-
temperature relations for adiabatic walls.

Figure 19. Reynolds analogy as a function
of wall temperature according
to Eq. (70).
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A comparison of Eq. (70) with experimental data is presented in Fig. 20. The solid
curve in Fig. 20 is Eq. (70), and the dashed extension is the limiting result of Eq. (70)
for large Ty /T,yw. With the exceptions of Eq. (70) and the data of Wilson (Ref. 69),
Fig. 20 was taken from the report of Cary (Ref. 70). Note that Cary plots 2¢y, /ce rather
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than the inverse as plotted in Fig. 19. Of particular interest here is the behavior of 2c¢y /ce
for small values of hy, /H,, . Cary states that there is an indication from the experimental
data that decreasing the ratio of hy/H, _ decreases 2cy/ce, an observation predicted by

=

sym "o Ref.
sym Mo Ref. > 7.0 61,62 and 63
o 4.0 55 o 6.4
o 2.5 58 o 5.4
o 6.8 59 v 58
5 7.4 60 a 7.1
o 6.8 60 ¢ 1.3
o 88 61,62 and 63 o 1.7
0 1.4 o 1.2
n 4.6 q 4.9 64
v 16 mh. 1.51t0 4.0 65
v 81 = 01003 65

This Line Represents Wilson's
Experimental Data (Ref. 69)

Kozlov (Ref. 68), Mgy =3
6
Reg, x = 10

7
Reg, x = 10 Colburn (Ref. 66)
;z i % _'/;Chi and Spalding (Ref. 65)
1l "= }=— Limits for von Kdrmén
2% ol 7 (Refs. 32 and 55)
¢ g0l Kozlov (Ref. 68), Mg, = 8
0.9 R =1 @ Reynolds (Ref. 67)
€eo, X 7
0.8 Regy x - 10
0.7 L 1 L s N Il { J
0 02 04 06 08 L0 L2 14

hw/Ho, ©

Figure 20. Theoretical and experimental Reynolds analogy data.

the present result. This observation is further substantiated by the results of Kozlov (Ref.
68) and Wilson (Ref. 69), both of which are presented in Fig. 20. Kozlov's (Ref. 68)
results are empirical expressions for the local skin-friction coefficient and Stanton number
which were derived independently from fits with experimental data. Wilson (Ref. 69) states
that the theoretical prediction of decreasing 2cy, /c¢ with decreasing hy /H,, has not been
reported. For larger values of hy, /H, _, the present result is seen in Fig. 20 to be about
a compromise of the results of previous investigators.

5.0 DATA REDUCTION OF PITOT PRESSURE MEASUREMENTS

The results of the previous two sections, and the work of Allen and Tudor (Ref.
71) in determining skin friction from pitot pressure measurements, are incorporated in
this section in a data reduction computer program. Input includes spatial measurements
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of pitot pressure taken normal to a wall, and output includes Mach number distribution,
velocity distribution, temperature distribution, various boundary-layer parameters, and skin
friction.

The calculation of Mach number distribution is, of course, not new and is included
only to be complete. Further usefulness of pitot pressure data follows if the temperature
distribution is measured or some relation between velocity and temperature is used. It
is assumed here that only pitot pressure data are available, and a relation between velocity
and temperature is required. Commonly used relations are either the Crocco (Eq. (42))
or modified Crocco (Eq. (43)) result. Crocco's relation is essentially the assumption of
a constant total temperature across the boundary layer with the requirement that the
wall temperature be equal to the free-stream total temperature. The modified Crocco result
does not require a constant total temperature; however, it does not properly predict the
total-temperature distribution for an adiabatic wall (as discussed in Section 4.). The
velocity-temperature relations used here are those obtained in the previous section. Using
a velocity-temperature relation, it is possible to calculate velocity and temperature
distributions, boundary-layer parameters, and skin friction. A listing of the computer
program is given in Appendix B.

5.1 MACH NUMBER, VELOCITY, AND TEMPERATURE DISTRIBUTIONS

The data reduction program was written such that if the free-stream flow is subsonic,
then the static pressure (which is usually measured to determine M_) is input for the
y = 0 point (at the wall) and M_ is calculated from the perfect gas, isentropic relation

(Ref. 72)
y=1 (71)
()

If the free-stream is supersonic, then M_ is obtained by solving the adiabatic, perfect gas
equation (Ref. 72)

Y

1
, 2 y=1 —
po,oo _ ()’+ 1) Moo ')/ + 1 'y..] (72)
Po 00 (- DM2 + 2 gMZ - D)

for M_ by the Newton-Raphson method (Ref. 73).

The Mach number distribution across the boundary layer is obtained by solving the
Rayleigh pitot equation (Ref. 72)
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B R
o _ [<_V_+_1>M_2_] y [L_]V"l (73)
Peo 2 29M? ~ (= 1)
for M for
Po
- > ((y + 1727/ 4~D
and
Py 1
Pl
° Loy (74)
(1 + & 2 Mz)

for M for pd/p. < ((y + 1)/2)7/(v-1), The static pressure is assumed constant across the
boundary layer, and is input for M_ < 1 and calculated from Eq. (71) for M_ > 1. Equation
(73) is solved for M by the Newton-Raphson method (Ref. 73).

The Mach number distribution provides one equation for velocity and temperature
at each measured point (spatial position) in the boundary layer according to the expression

T \ %
M U 0o
WoT L ) )

which, of course, is a consequence of the definition of Mach number. The left-hand side
of Eq. (75) is known from the Mach number distribution, and therefore, U/U_ and T/T
can be determined if another independent equation is available to provide two equations
for the two unknowns, U/U_ and T/T_. The expression used for this equation is that
given by Eq. (59) or (66). Equation (75) and Eq. (59) or (66), whichever is appropriate,
are solved simultaneously for the velocity and temperature.

Having calculated spatial distributions of velocity and temperature, and using p/p_
= T,_/T because of the assumption that the static pressure in the transverse direction is
constant, various boundary-layer parameters such as displacement and momentum thickness
can be calculated by numerical integration. Because of experimental difficulties associated
with making measurements extremely close to a wall, Eq. (35) of Section 3.0 is used
to describe the velocity distribution (from which temperature is determined using the results
of Section 4.0) for y* < 140.
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5.2 SKIN FRICTION

The skin friction is determined by the technique discussed by Allen and Tudor (Ref.
71). Allen and Tudor present plots of U/U_ versus (u_/uw) Re_y with several curves,
each for constant c¢. Each plot is for different M_. These plots are based on the
compressible law-of-the-wall as presented by Fenter and Stalmach (Ref. 74). This equation

is given by
ol (% O \
——-—-—TT/Z = 5.75 lOglO Reoo,y ,,L_W T T— + 51

o; T, w (76)
0? ‘i

The technique of Allen and Tudor (Ref. 71), which is an idea first proposed and
used by Clauser (Ref. 75) for incompressible flow, is to plot U/U_ versus (u_/mw) Re_y
on transparent paper and overlay it on the plot in their report for the appropriate M_,
and determine c; by the curve in best agreement with the experimental data. Agreement
cannot be expected all the way across the boundary layer, i.e. for all values of (u_/uy)
Re_y. This is because the law-of-the-wall expression is only valid in a particular region
near the wall. The reader is referred to Ref. 76 for an example of the agreement sufficient
to determine c¢ by this method. The trend is for the experimental data to follow a curve
which is parallel to a constant ¢ curve. The value of ¢ which corresponds to the curve
fit that passes through the experimental data in this portion of the curve is the appropriate
value of ¢y for the experimental data. That is, there are data points in a profile set which
have the same values of c¢. This technique has the important practical advantage of not
requiring data from the sublayer.

In lieu of plotting the data, skin friction is determined in the present data reduction
program by solving Eq. (76) for c; by the Newton-Raphson method (Ref. 73) at each
point across the boundary layer. Assuming the viscosity is proportional to temperature
to some power, everything in Eq. (76) is known except cs. The power law u ~ T0.768
was used in the present data reduction because it was that used by Allen (Ref. 76). For
the experimental data considered thus far, the constant values of c¢ for each set of data
(i.e. the data for each profile set) have also been equal to the minimum c; in a profile
set. Equal here means within the scatter of the data. This facilitates the selection of the
appropriate ¢; in the computed set of cs's.

It was pointed out by Allen and Tudor (Ref. 71) that the law-of-the-wall given in
Ref. 74 has only been verified for an adiabatic or near-adiabatic wall. Also, Allen and
Tudor further state that the surface should be smooth in the aerodynamic sense, and
caution should be employed in using the technique in flows with large pressure gradients.
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Verification of this technique was investigated by considering the experimental data
of Winter and Gaudet (Ref. 12). Winter and Gaudet measured skin friction using a balance.
They also made boundary-layer pitot surveys which were used to determine U/U_ which
in turn were used to determine c; by the present data reduction program for comparison
with cf as determined by the balance measurements. These results are presented in Fig.
21 and good agreement is obtained between these two methods of determining cs.

0.003 - Experimental Measurements of
Winter and Gaudet (Ref. 12).
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Figure 21. Skin-friction coefficients as determined by balance measurements
and data reduction of boundary-layer pitot pressure measurements.

6.0 TURBULENT BOUNDARY-LAYER MEASUREMENTS
FROM TUNNELS 16S, 16T, AND ART

6.1 MACH NUMBER, VELOCITY, AND TEMPERATURE DISTRIBUTIONS

Boundary-layer measurements have been made on the walls, ceiling, and floor of the
16-ft Supersonic Wind Tunnel (16S) in PWT by Baker and Pate (Ref. 77) and Maxwell
and Hartley (Ref. 78). These measurements were made using a pitot pressure rake where
the spacing between probe centers was 0.5 in. near the wall and 1.0 in. away from the
- wall. Recently, measurements have been made of the floor boundary layer in 16S using
a traversing probe mechanism to make pitot pressure and total-temperature measurements
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simultaneously. Results from the pitot pressure measurements are presented in Figs. 22
through 24. These results are for Station -2.9 which is 61.6 ft (axial distance) downstream
of the geometric nozzle throat. The numerical solutions were started at the nozzle throat
and the pressure gradient corresponding to that appropriate for the flexible sidewalls rather
than the straight floor or ceiling wall was used because it was known from the nozzle
design criteria. The initial conditions used to begin the numerical computations at the
throat were estimated by obtaining solutions (beginning about 75 ft upstream of the throat)
through the converging portion of the nozzle using the pressure distribution from assuming
one-dimensional flow through the geometric area distribution. The numerical results for
Station -2.9 were relatively insensitive to the initial conditions, so long as the initial
boundary-layer displacement thickness did not exceed that predicted by the numerical

solutions up to throat.

sym Mo Regfft  prove size, in. Source
o 160 0.738x 100 0.035 165 Data
o L60 0.738x100 0,032 165 Data
o 160 1105x108 0.035 165 Data
o 160 1361x100 0.03 16S Data
o 160 1.602x108 0.035 165 Data
o 160 1.614x 100 0.035 165 Data
a 160 1.602x 100 0.032 165 Data
~—— 160 0.700x 106 - Present Calculation
— 160 1.600x 1()6 --- Present Calculation
10 ? o )
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Figure 22. Theoretical and experimental velocity distributions
in Tunnel 16S for M_ = 1.6.

The agreement between calculations and experimental data in Figs. 22 through 24

is considered good. The maximum discrepancy occurs for one of the lowest Reynolds

number, M_ = 1.6 profiles in Fig. 22 indicated by the circle symbols. This profile
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sym Mg Reg/ft  probe size, in, Source
o 220 0.739x 106 0.062 165 Data
o 220 0718x108 0.032 165 Data
o 220 1.210x 10 0.062 165 Data
5 220 L679x108 0.062 165 Data
o 220 1.679x 105 0.032 165 Data
——— 2,20 0.700x 106 - Present Calculation
— 2.20 1.700x 10 Present Calculation
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All Results for Sta -2.9
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Figure 23. Theoretical and experimental velocity distributions
in Tunnel 16S for M_ = 2.2,

sym Mo Reg/f  probe Size, in. Source

& 160 1.602x10 0.032 165 Data

o 220 1619x108 0.032 165 Data
--= 160 1.600x10 Present Calculation
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Figure 24. Theoretical and experimental Mach number distributions
in Tunnel 16S for M_ = 1.6 and 2.2.
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measurement was repeated one week later using a different pitot probe, and better
agreement was obtained as indicated by the square symbols in Fig. 22. Although the digital
voltmeter output of the pitot pressure was not stable while the circle symbol profile was
taken, the discrepancy is not necessarily attributed to probe vibration or transducer
problems. Maxwell and Hartley (Ref. 78) observed some time ago that at low Mach number
the boundary layer varied with time. This anomaly was not resolved in their work and
it is not resolved herein.

Boundary-layer measurements have recently been made on the floor and east side
wall of the 16-ft Transonic Wind Tunnel (16T) in PWT using this same traversing probe
mechanism. These measurements were made at Station -8 on the solid walls between the
first upstream hole patterns at the beginning of the transition region which separates the
solid and porous tunnel walls. Measurements on the floor centerline were made first and
compared with the present numerical solutions. The pressure gradient used for the
calculations was obtained from static pressure measurements extending 32 ft upstream
of the point of measurement, and the pressure distribution upstream of the static
measurements was obtained from solutions using the Potential Flow Computer Program
(Ref. 79) and were provided by Palko, Todd, and Lutz of AEDC. Examples of these
boundary-layer results are presented in Fig. 25. All measured boundary layers were thinner
than predicted. The results from the potential flow solution for M_ = 0.6 and 0.8 indicated
a pressure difference between floor (or top) and sidewall due to the difference in
contraction of the top and bottom and the sidewalls. (The top and bottom wall contraction
is the same and each sidewall contraction is the same.) The sidewall pressure was larger
than the top or bottom wall pressure upstream of Station -60, and then the bottom and
top wall pressure was larger than the sidewall pressure downstream of Station -60, with
. all pressures becoming equal at Station 0. Considering the possibility that mass flow from
the floor boundary layer could be taking place because of this pressure difference
downstream of Station -60, the probe was moved to two feet below the east wall centerline
at Station -8 and further measurements were made. Examples of these results are given
in Figs. 26 and 27. The predicted boundary layers are only slightly thicker than the
measured and better agreement is obtained than with the floor data.

To investigate flow behavior further in 16T, the east half of the floor and bottom
half of the east wall were coated with oil to visually study flow direction near the wall
for a M_ = 0.7 flow condition. Two primary results of this investigation should be noted.
First, oil streaks downstream of Station -60 and upstream of Station -8 definitely indicated
a flow direction across the bottom wall, away from the centerline, and up the sidewall.
Secondly, although no pumping is applied to the porous walls at M_ = 0.7, oil streaks
indicated that some of the holes were actually pumping in the transition region, and also
some streaks indicated the flow was influenced by this local pumping a few feet
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(approximately two to three) upstream of the transition region. Therefore, in addition
to mass being moved from the floor to the sidewall, it could also be removed from the
solid wall region existing between the sawtooth pattern of holes at the beginning of the
porous wall transition region, thereby thinning the boundary layer.

sym Mg Regfft 6% in. 6.in H Source
o 06 244x 106 0.511 0.359 1.423 16T Data
0.6 2.50x10° 0.676 048 1397 Present Calculation
o 0.8 500x 109 0.481 0,310 1550 16T Data
----- 0.8 510x 106 0.619 0.418 1.48 Present Calculation
8

Sta -8
y, in. 4+

-~

ol = i » SRS P N,

\\
DEI\

6L Sta -8

y; in. 4‘_

0 ! i
0 02 04 06 08 L0
U,

Figure 25. Theoretical and experimental velocity distributions on the floor
centerline in Tunnel 16T for M_ = 0.6 and 0.8.

Results from the total-temperature measurements which were made simultaneously

with the pitot pressure in 16S are presented in Figs. 28 and 29 in u - T coordinates.
One set of the M_ = 2.2 data is presented in Fig. 30 in terms of T/T,_ versus U/U_.
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Also presented in Fig. 30 are the present results according to Eq. (59) and Crocco's result,
Eq. (42), which assumes constant total temperature across the boundary layer and is
frequently used to reduce pitot pressure data. The sensitivity of the u - T coordinates
is again made clear by the fact that although the trend of the present analytical results
is in agreement with the experimental data in Figs. 28 and 29, the absolute value is not
in agreement for all U/U_ for these particular data. However, good absolute value agreement
is obtained in Fig. 30 in terms of static temperature. Fortunately, for data reduction
purposes, it is the agreement in static temperature as a function of velocity that is
important.

Sym Reg/ft 5,in. 8.in H Source
o 4741x10® 058 0364 1610 16T Data
— 4741x10® 0613 0429 1429 Present Calculation
o 3.8%5x105 058 0393 1483 16T Data
— 3.8%5x100 0630 0439 1435 Present Calculation
o 2210x10° 0.63 042 1504 16T Data
10 — 2.210x105 0.682 0470 1.451 Present Calculation

-
a 0.435x106 0.833 0559 1.490 16T Data
_— 0.435)(106 0.923 0.611 1.511 Present Calculation
8 -
6 -
y, in,
4t
2 -
0 ] | < -
0 0.2 0.4 0.6 0.8 1.0 0.8 1.0 0.8 1.0 0.8 1.0

Ul

Figure 26. Theoretical and experimental velocity distributions 2 ft below east-wall
centerline in Tunnel 16T for M_ = 0.7.

Comparisons between experimental data and the numerical calculations of Section
2.0 are presented in Fig. 31 for M_ = 1.6 and 2.2. The agreement is considered reasonable.

The total-temperature probe used to obtain the temperature results in Figs. 28 through
31 was 0.046 in. in diameter and constructed according to the description given in Ref.
80. The center of the total-temperature probe was positioned to be the same distance
from the wall as the center of the pitot pressure probe and was traversed simultaneously
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with the pitot probe. The probe recovery factor was determined by relating the measured
probe temperature outside the boundary layer to the tunnel total temperature as measured
upstream in the stagnation chamber. Tunnel stratification was neglected. The wall
temperature was measured by determining the surface temperature of two 0.25-in. Gardon
gages (Ref. 81) located on the tunnel floor near the total-temperature probe. These two
measured wall temperatures were within 0.2°F.

sym Reoff 5% in. gin W Source
o 193x100 0606 0366 1654 16T Data
--- 1.967x10° 0682 0431 1581 Present Calculation
o 3.447x100 0600 0366 1639 16T Data
—— 3.407x109 0628 0402 1.561 Present Calculation
20

16 |

Sta -8
12 -

yie

oo
©0-0 0-0-0-0-0-0

6 L Sta -8

y,in. 4}

0 1 1 1 d
0 0.2 0.4 0.6 0.8 1.0

Ulg

Figure 27. Theoretical and experimental velocity distributions 2 ft
below east-wall centerline in Tunnel 16T for M_ = 0.9.
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sym Mo TuTo o Reglft Source
o 1632 0949 161x10° 165 Data
o L6l7 097 0.74x105 165 Data
— 1600 0,97 - Eq (59

L2
All Results for Sta -2.9
on the Floor Centerline
1.0 | a0 °
g
&
Figure 28. Theoretical and experimental 0.8 |-
velocity-temperature relations
in Tunnel 16S for M_ = 1.6. T 06
e
(o]
0.4 o
0.2
0 | ] | ] ]
0 0.2 0.4 0.6 0.8 1.0
Uy,

1.2

LO |-

0.8
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sym Mo Twlo Regfft Source
o 2219 0929 1.68x100 165 Data
o 228 094 0.72x10° 165 Data

—— 2.200 0.929 --- Eq. (59
All Results for Sta -2.9
on the Floor Centerline 5
[es]
d
B og” . . .
690 .Figure 29. Theoretical and experimental
@9 velocity-temperature relations
- @°§§ in Tunnel 16S for M_ = 2.2.
o ﬁn
on

0 0.2 0.4 0.6 0.8 L0

U,

51



AEDC-TR-76-62

Sym M_m Twr,ro, ® Source

© 2219 0,929 165 Data (Reg)ft = 168 x 109)

2219 0.929  Eq. (59
----- 2219 10 Eq. (42), Crocco Result

ExperimentaAI Data Are Same as
Circle Symbols on Fig. 29

Figure 30. Theoretical and experi-
mental static tempera-
ture results in Tunnel
16S for M_ = 2.2

U/U(D
12
10, sym Mo Two,o  Reglft Source
o 2219 099 168x10° 165 Data
8 2.200 0.941 1. 70x106 Present Calculation
o L6322 0940 161x100 165 Data
y, in 684 """ 1600 0.960 1.60x 105 Present Calculation

ol ,
1.0 1.2 L4 L6 L8 2.0

Figure 31. Theoretical and experimental spatial distributions of static
temperature in Tunnel 16S for M_ = 1.6 and 2.2.
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6.2 SKIN FRICTION

Of particular interest here are the tunnel wall skin-friction coefficients in 16S. Tunnel
wall skin-friction coefficients are required in the boundary-layer transition correlation
method of Pate and Schueler (Ref. 82). Boundary-layer pitot pressure measurements were
made by Baker and Pate (Ref. 77) on the ceiling and east wall of 16S at Station 5.4.
These measurements were used to determine c¢ and 8" which were used in the correlation
of the boundary-layer transition measurements made on a 12-in.-diam hollow cylinder
located in the 16S test section. Skin friction was determined for use in Ref. 82 by the
expression ¢ = 260/%, where % was taken as the axial distance from the nozzle throat
to the point of measurement. Baker's measurements (Ref. 77) have been reduced using
the present data reduction technique, and these results are presented in Fig. 32. Also
presented in Fig. 32 are measurements at Station -2.9 corresponding to the 16S data
already presented.

The skin-friction coefficients used by Pate and Schueler (Ref. 82) (they used M_
= 3 data only) were those determined from Baker's ceiling (straight wall) measurements
using c¢ = 20/%;. These results are about 25 percent larger than the M_ = 3 ceiling data
in Fig. 32 using the present data reduction technique. Also, there is considerably more
scatter than in the data of Fig. 32. Using ¢ = 20/, the ceiling data (Ref. 77)
produce larger c¢'s than the east-wall data. However, the east-wall data have larger skin
frictions than the ceiling data using the present technique as shown in Fig. 32. The skin
frictions used by Pate and Schueler were about 10 percent larger than the east wall results
in Fig. 32. The difference in c; between ceiling and east wall data for the same Mach
number is attributed to the difference in upstream pressure gradients.

Skin-friction measurements (i.e. deduced from pitot pressure measurements using the
present data reduction technique) have also been made in the Acoustic Research Tunnel
(ART) and Tunnel 16T in PWT. These data, along with those from 168, are presented
in Fig. 33 using the correlation technique of Winter and Gaudet (Ref. 12). These data
cover the Mach number range from 0.5 to 3.0. The east wall (Tunnel 16S) data at Station
5.4 are slightly high in F, c¢ and/or F§ Rep. This deviation is within the scatter of
the data used by Winter and Gaudet (Ref. 12), and the correlation is considered reasonable.
Skin frictions obtained by using ¢f = 26/% would have larger values of F; c¢¢ than the
Tunnel 16S data in Fig. 33, and acceptable correlation would not be obtained.

In practice, skin frictions are frequently required for axial stations or flow conditions
where data are not available. To obtain ¢; for different axial locations and flow conditions,
the following suggestions are given. A program is available to calculate c¢ according to
the theory of White and Christoph (Ref. 83). It gives reasonable results (Fig. 32) and
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can be used to predict the trend and hence extrapolate or interpolate quite accurately.
The same can be said of the present finite-difference calculations, of which some
comparisons with data are given in Fig. 32. Sufficiently accurate interpolations or
extrapolations might be made using c; proportional to some power of Reynolds number,

sym Mg Station Source.
o 1.6 -2.9 Experimental Floor Data
o 2.2 -2.9 Experimental Floor Data
As Indicated -2.9 Theoretical (Ref, 83)
=== As Indicated -2.9 Theoretical (Present Calculations)
o 2.0 5.4 Experimental Ceiling Data
* 2.0 Experimental East-Wall Data
& 2.5 Experimental Ceiling Data
. 2.5 Experimental East-Wall Data
20 & 3.0 Experimental Ceiling Data
A 3.0 Experimental East-Wall Data
1.8} o
\o\ [e] 1 6
L6 SO My =
Cf X 10'31 \%\ N Y
14} \B\\E Mco=22
12}
L0 ] | e | L [ |
10° 109 107
Reg/ft
2.0
Curves througlh the Data Below Were Faired Assuming
L8F o~ (Reg/tt L7
1.6 |
¢x 107 \
L4} %
L2} N&\QA\@\E
L0 ! [ | ] [ N AN S W |
10° 106 107

Req/ft

Figure 32. Tunnel wall skin-friction coefficients

in Tunnel 16S for M_ of 1.6 to 3.0.

such as the faired curves in Fig. 32. Another possibility is to use the correlations of Winter
and Gaudet (Ref. 12). Besides F. cs versus FgReg, they also present F. c¢f versus
(F5/F.)Rex. These two plots provide a direct relation between Reg and Rex and hence
interpolations or extrapolations can be made graphically.
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M_m_ Tunnel Location

5 ART  Test Section, Floor Centerline

6 16T Sta -8, Floor Centerline

16T Sta -8, 2 ft below East-Wall Centerline
0.8 16T  Sta -8, Floor Centerline

0.85 16T Sta -8, 2 ft below East-Wall Centerline

w
UOOOQ>0<DOQGOOE
o
-

Sr 0.9 16T  Sta-8 2ft below East-Wall Centerline
L6 16S Sta -2.9, Floor Centerline
2.0 16S  Sta 5.4, Ceiling Centerline
2.0 16S Sta 5.4, East-Wall Centerline
4 2.2 165  Sta-2.9, Floor Centerline
2.5 165  Sta5.4, Ceiling Centerline
2.5 16S Sta 5.4, East-Wall Centerline
3.0 165  Sta5.4, Ceiling Centerline
3 3.0 165  Sta5.d, East-Wall Centerline
Fe Cf X 10 Correlation of Winter and Gaudet, Eq. (22) of Ref. 12
2L
12
Fo=(1+02m2)
. 2
b Fer1romemg
0 | | ]]lllll | | lllllll 1 ] lllllll
10 10 10° 10
F5 Ree

Figure 33. Correlation of tunnel wall skin-friction data from three tunnels in PWT,

6.3 BOUNDARY-LAYER PARAMETERS

The frequently used boundary-layer parameters of displacement thickness, 6%,
momentum thickness, @, and shape factor, H = §*/6, are presented in Fig. 34 for Tunnel
16T at Station -8. These data indicate, as did the velocity. data, that the floor boundary
layer is thinner than the east wall boundary layer. For example, the M_ = 0.6 and 0.8
floor data have a &§* of about 0.47 in. at Re_/ft of approximately 4.5 x 106, whereas
the M_ = 0.7 east wall data show §* to be 0.57 in., or about 20 percent larger. Although
the calculated shape factors are in agreement with measured shape factors for both floor
and east wall data, only relatively good agreement with 6* and 8 is obtained with the
east wall data. Plausible explanations for the difference in floor and east wall boundary
layers have been given when the velocity distributions were considered.

Boundary-layer parameters in Tunnel 16S at Station -2.9 are considered in Fig. 35.
Good agreement between calculated and measured data is obtained. Results for one of
the low Reynolds number, M_ = 1.6 condition, are shown to be low as compared to

55



AEDC-TR-76-62

the other data in Fig. 35. This anomaly was also discussed earlier when the velocity data
were considered. Repeat measurements of this flow condition provided results in better
agreement with the calculations and the other data as shown in Fig. 35. Boundary-layer
parameters from the measurements of Baker can be found in Ref. 77. Boundary-layer
parameters for a wider range of Mach numbers have been measured and reported by
Maxwell and Hartley (Ref. 78).

101 —
= .
~  Floor Centerline
I Sym ﬂg Source
H :6_:;;02:;&}” o 06 Experimental Data
100 - o 0.8 Experimental Data
5 = 0.6 Present Calculations
'.'" — o‘\\ 5* ---- 0.8 Present Calculations
8, in - ox‘\‘}%_g
L 8@
1'0'1 L1 111t Lol
100 106 107
Reg/ft
0
= 2 ft below East-Wall Centerline
_ sym Mo Source
H =2==8A- 1y o 0.7 Experimental Data
100 | o 0.8 Experimental Data
6,in. [ Nm .« & 0.9 Experimental Data
8, in o ‘6\}5 — 0.7 Present Calculations
- TEOg e ---- 0.9 Present Calculations
10-1 Lot il ot
100 106 107

Rey/ft

Figure 34. Boundary-layer parameters in Tunnel 16T for Station -8.
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10!~
- Experimental Data for Floor Centerline
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H i §H
L 0 0O
» TR -
U§N‘D“ .
8", in o T oo }6
100 |-
8, in. | o
L @ —-L
i u-°~a_ }9
- Sym Mp Source
© L6 Experimental Data
B o 2.2 Experimental Data
— 1.6 Present Calculations
=== 2.2 Present Calculations
10-1 ] ] [ | 1 ] Lol a1
10° 100 10/

Reg/ft
Figure 35. Boundary-layer parameters in Tunnel 16S for Station -2.9.

7.0 CONCLUSIONS AND COMMENTS

The numerical boundary-layer computations described in Section 2.0 have provided
a useful tool for estimates of boundary-layer problems associated with various research,
test, and test facility development projects conducted in PWT. Of primary importance
in this work was the assessment of the modeling for the Reynolds stress and the calculation
of the turbulent kinetic energy. Although the particular modeling of the Reynolds stress
used here has been used by previous investigators, the particular modeling of the turbulent
kinetic energy equation (on which the Reynolds stress depended) has not been used. The
approach followed permitted the use of the natural turbulent kinetic energy boundary
conditions and the computation of e throughout the boundary layer without having to
handle such regions as the laminar sublayer, buffer layer, logarithmic, and wake regions
separately.
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The analytical investigation of turbulence near a wall (Section 3.0) provides convenient
expressions of describing the flow in this region. Of interest is the fact that these results
were obtained without the use of mixing-length theory, in which the approach appears
to be unique. This was made possible by the form of the turbulent kinetic energy equation
developed in Section 2.0. '

The analytical results obtained in Section 4.0, for temperature as a function of velocity
throughout the boundary layer, were shown to be improvements over previously used
results. The application of these results to the calculation of the quantity 2cy/c¢, indicated
that 2cp/ce decreased for small decreasing values of hy /H,, . This prediction was
substantiated by comparisons with experimental data.

The analytical results of Sections 3.0 and 4.0 were used in Section 5.0 in a computer
program for the data reduction of pitot pressure measurements made in turbulent boundary
layers. In addition to Mach number, velocity, temperature, and various boundary-layer
parameters, skin friction is determined from the pitot pressure measurements. The
technique used to determine c¢ has the important practical advantage of not requiring
measurements near the wall in the sub- or buffer layers and hence eases experimental
requirements.

The recent pitot pressure and total-temperature measurements made in Tunnel 16S
were in good agreement with the present theoretical results. However, this was not the
case with regard to the solid wall pitot pressure measurements made in Tunnel 16T. The
calculated boundary layer was consistently thicker than the measured boundary layer,
particularly the floor boundary layer. Potential flow solutions indicate, however, that the
flow near the tunnel wall experiences a pressure drop from the floor toward the sidewall,
and oil streak experiments conducted in the lower east quadrant for 60 ft upstream of
the test section at M_ = 0.7 indicated that a crossflow did occur from the floor toward
the east wall. The oil streak experiments further indicated that crossflow was induced
over the solid wall between some of the upstream holes in the transition section, which
extends 10 ft upstream of the test section, thereby effecting the measured boundary layer.

The skin-friction coefficients obtained by using the present data reduction program
to reduce the measurements of Baker and Pate (Ref. 77) were not in agreement with
those obtained by Pate and Schueler (Ref. 82) and used to correlate the Tunnel 16S
boundary-layer transition data. However, preliminary results indicate that the effect of
using the present skin-friction coefficients in the correlation of Pate and Schueler (Ref.
82) is not necessarily to invalidate the correlation of the Tunnel 16S data as it is to
extend the correlation below the original lower Mach number bound of three to include
the remainder of the Tunnel 16S transition data (Ref. 77) (which include Mach numbers
down to two) not correlated by Pate and Schueler (Ref. 82).
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An effort was made to make the present computer results readily available for

engineering applications. The boundary-layer computer program given in Appendix A has
simple input, and unless desired, no dimensional variables or properties are input and no
units are involved. The pitot pressure data reduction computer program given in Appendix
B is essentially self-contained and has been used for online and offline data reduction..

10.
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APPENDIX A
BOUNDARY-LAYER COMPUTER CODE

Improvements to this code that have to do primarily with the region near the wall were
made subsequent to its submission for publication. These improvements hardly produce
discernible changes from the results given herein. The code used for the computations in this
report is listed here and the new version is available on request.
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MAIN
c MAIN A 2
IMPLICIT REAL#8(A=He0=2) _
COMMON /GEN/ PEI.AMI.AME.DPDX.PREF(Z)oPR(Z).P(Z)oDENoAMonu.xD.XPo A 3
_ . 1XLeDXoXSTEPsCSALFAsALPHA XRIREORS s GAM»ZETAsPPO TWTINLYSTART2USUPID A 4
2IMEN) IHEAT9Z9TO9 INTG/I/NoNP1oNP2oNPIoNEQINPHoKEXsKINyKASEoKRAD/B/B A 5
3ETA:GAMA(2) s TAUI 2 TAUE2AUI (2) 9AJE(2) o INDI(2) o INDE(2) /V/L(200) oF (202 A 6
400)9sR(200) sRHO(200) 9OM(200) 9 Y (200)/C/SC(200)9AU(200)9BU(200)9sCU(R0 A 7
50)2A(29:200)9B(29200)9C(2+200)/D/YR(200) UR(200)2RR(200) sHR(200) XM A 8
6(200)sPITOT(200) s TEMP (200) /E/DSTAR(300) 9 XRS(300) sRWRS(300) +COSAL(3 A 9
100} A 10
1/F/1TURBs IPRINT s TURBINy TURBFSs IDELY
. COMMON /L/ AKy ALMG ) IR LA 11
CALLERRSET(207+2569=191)
CALLERRSET(20892569=19)) L : L
CALLERRSET(20902569=191)
. CALLERRSET(2919256s=10l). . . _
CALLERRSET (25302569=191) .
B CALLERRSET(26192569=121) . . ) S e oo
1 CONTINUE A 12
AKsl.D¢0 A 13
INTG=0 A 16
CaLlL BEGIN . A 18
AMI=0,D*0 A 18
- AME=0,D0 A 19
DXsXSTEP®YSTART '
— XDsXUsDX - . IR L .
GO 70 3 A 20
2 CALL READY A 21
c THE FOLLOWING STATEMENT IS TO KILL SKHOT IF PROBLEMS (LIKE MERGING) A 22
L. OCCUR IN SUBROUTINE READY e . .. A 23
IF (XDeGToXL) GO TO 13 A 26
__3 . CONTINUE . R A 25
DO 5 Ms1loNP3 :
JF(U(NP3I=M) ZU(NP3) sl T20.99D¢0)6G0 TQ 6 .
5 CONTINUE ‘
& LENP3=M .
DELTAsv(L)0(0.99000-U(L)/U(NP3))'(Y(LOI)-Y(L))/((U(L‘l)-U(L))/U(NP
®3)) — S .
DSTAR(SOO)-DELTA
INTGRINTGe) A_26
XDsXUeDX .
—_CALL PRE (XDsDPDX) __ ___ __ . A 39
CALL ENTRN A 60
. _CALL PRE (XUDPDX) e e e A 4}
C CHOICE OF FORNARD STEP A 27
> @ |
Dx-DABS(DX)
_ _IF(DX.GToXSTEP#Y (NP3))DX=XSTEP#Y (NP3).
XD=XU+DX A 29
. _IF (KASE.EQ.2) GO 70 6 e L A 42
IF (KINo.EQo.l) CALL MASS (XU.XD.AMI) A 43
_1F (KEX.EQe.1) CALL MASS (XU.XDoAME) A 68
CALL WALL A 65
6 ___CALL OUTPUT . __ . . e LA 66
CALL PRE (XDoOPDX) A &7
. . CALL COEFF _ . A 68
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(e N el

10

12

13

14

MAIN
SETTING UP VELOCITIES AT A FREE BOUNDARY : A 49
MODIFIED FOLLOWING STATEMENT FOR INTERNAL CORE FLOW . ___ _.A__S0
IF (KEXoEQe2) U(NP3)30SQRT(2,D¢0) #DSQART (1,D+0=PPO®#((GAM=1,D¢0)/GA A 5]
“M) )
IF (KINeEQe2) U(1)3DSQRT(U(1)®U(1)=2,D+0% (XD=XU)#DPDX/RHO (1)) A 52
Cabl SOLVE (AU»BUsCU»UsNP3) A 53 .
SETTING UP VELOCITIES AT A SYMMETRY LINE A 54
IF (KINoNEe3) GO TO 7 S e A 55
utlis=u(2) A 56
IF (KRADoEQe0) U(1)=,750404U(2)+.25040%U(3) A 57
IF (KEXeEQa3) U(NP3)=,750¢08U(NP2)+,25D¢0#U(NP1) A 58
IF (NEQe.EQel) GO TO 16 — A__59
DO 13 J=1sNPH A 60
DO 8 I=2yNP2 A_6})
AUCT)=ACJo 1) A 62
Bu(hy=B{JeD .. - ... . . __ A 63
CU(I)=sC(Je ) A 64
DO 9 I=leNP3 A 65
SC(I)=F(Jo1) A 66
CALL SOLVE (AUsBUsCU9SCyNP3) A_67
DO 10 I=1,NP3 ‘ ‘A 68
F(Jel)sSC(I) e A 69
IF (KASE.EQ.2) GO TO 11 A 70
SETTING UP WALL VALUES OF F A 71
IF (KINsEQoloANDoINDI(J) oEQe2) F(Jpl)m( (1, De0+BETA+GAMA(J) ) #F (Us2) A T2
12(1:D¢0¢BETA=GAMA(J) ) *F (Je3)) #.5000/GAMA (.)) A 73 _
IF (KEXoEQeloANDo INDE(J) 0eEQe2) F(JsNP3)B((1,D900BETASGAMA(J))®F(Je A T4
lNPé)-(1.0000BETA'GAMAJAU“EJJLNPJ_U_-5D__QLGAM_J) A_78
SETTING UP SYMMETRY=LINE VALUES OF F A 76
IF (KINeNE.3) GO 70 12 oo e A 77
Fldel)asF (Jo2) A 78
IF (KRADoEQe0) F(J2l)Z,750¢0%F (Jo2)2o25D009F (Je3) A_79
IF (KEXoEQo3) F(JoNP3)3,75D+0%F (JoNP2) ¢o25D¢0%F (JoNP1) A 80
_CONTINUE . - A 81
XP=XU A 82
XUsXD A B6
PEISPEI+DX® (R{1) ®AMI=R (NP3) ®AME) A 87
THE TERMINATION CONDITION e —_ A 88
IF (XUeLToXL) GO TO 2 A 89
_ IPRINTaINTG=]
CALL READY
.~ CALL HWALL
CALL OUTPUT .
..8TOP . ——— - I A 9]
END A 92=
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BEGIN

SUBROUTINE BEGIN C 1

IMPLICIT REAL®8(A=Hs0=2)

COMMON /GEN/ PEI+AMIoAMEoDPDXoPREF (2) 9PR(2) sP(2) 9yDENsAMU9 XU XDoXPoe C 2
1AL oDX o XSTEPoCSALFAALPHA9XRoREORS9sGAMe ZETA PPOs THTOs YSTART s USUP 9 ID A &
2IMENe ITHEAT9ZoTOo INTG/I/NoNPL1 NP2 NP3sNEQoNPHIKEX s KINsKASEoKRAD/B/B Cc 4
JETAGAMA(2) » TAUI 9 TAUEoAJI(2) s AJE(2) o INDI(2) o INDE(2)/V/U(200) oF (292 C 5
400)9oR{200)9RHO(200) 9OM(200) Y (200) C 6
1/F/7ITURB IPRINToTURBINs TURBFS IDELY

PROBLEM SPECIFICATION C 7

READ{5:28)KRADo IO IMENSNEQoKEXoKINo INEAT o ITURBo IDELY s IPRINToN _ .

READ (5929) REORSSZETAPR (1) 9sGAMoALPHAsXRoXL9USUP9YSTART9TWTO9XSTE C 9
1PoPR{2) s TURBINe TURBFS

IDIMEN=0 FOR PLANAR FLOW AND IDIMEN=] FOR AXISYMMETRIC FLOW c 1

INITIAL EDGE OF BOUNDARY LAYER IS YSTART c 12

PREF (1)=2PR (1) c 13

PREF (2)=PR(2)

APPROXIMATE CALCULATION OF UEDGE FROM ONE DIMENSION FLOW RELATIONS € 14

XU=s0eDe0 c 20

CaLL PRE (XUoDPDX)

UEDGE=DSQRT (2,0¢0% (1,D¢0=PPO®® ( (GAM=1,0¢0)/GAM)))

KASE=s2 cC 18

IF (KINeEQoloORSKEXsEQol) KASE=] € 19

NPHBNEQ=] € 21

NPisNe+]l c 22

NP2a3Neg c 23

NP3EN+3 C 24

INITIAL VELOCITY PROFILE c 25

Y(1)=20,00D¢0 e e . £ 28

U(1)30,0D%0 c a7

DELU2UEDGE/DF LOAT (NP2)

DO 1 I=2,NP3 c 30

U(l)=U(I=1)¢DELU .

Y(I)=YSTART®(U(I)/UEDGE)®#@]DELY

CONTINUE e — ... £ 3%

IF(ITURBL,EQ.,1)6G0 TO 30

DO 30 I=2oNP3 -

ETA=Y (1) /YSTART

U(I)B(2,0¢0*ETA-ETA%ETA) #UEDGE

CONTINUE

CALCULATION OF SLIP VELOCITIES AND DISTANCES o€ 35

BETAZ1,0¢0

GO TO (290394)9 KIN e ..€ 37

U(2)=U(3)/7(1.0¢0¢2,D¢02BETA) cC 38

Y(2)8Y(3)®BETA/(2,0¢04BETA) c 39

GO 7O 6 C 40

ull=u(l)®y(y.. . e C &)

Ul3sU(1)®U(3) C 642

U33=2U(3)*U(3) . e C 43

SQ=8646,D¢0%Ul1l=12.D00®Y13¢9,D20%2U33 C o4

U(2)=(16D90%U11=6,000%U130U33)/(2.De0@(U(1)+U(3))+DSQART(SA)) . C 485

Y(2)8Y(3)4(U(2)eU(3)=2,D0+00U(1))®,5D¢0/(U(2)¢U(3)*U(1)) C 46

GO TO 6 . £ &7

IF (KRADo,NE.,O0) GO 7O S C 48

U(2)2(4,D¢00U(1)=U(3))/3.De0 . e e £ 69

Y(2)=0,D¢0 C 50

GO 70 6 C 51
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10

1t
c

12

13

15
16

7

BEGIN
ut2)=utl) c s2
Y(2)3Y(3) /3,00 cC 53
G0 TO (7+809)s KEX C Se
U(NP2)3U(NP1)/(1eD¢002,D¢0%BETA) ¢ 55
Y (NP2) =Y (NP3) = (Y (NP3) =Y (NP1) ) 9BETA/ (24D¢0¢BETA) cC 56
60 TO 10 ¢ s7
U112U (NP1) #U (NP1) c S8
U13=U (NP1) #U(NP3) c 59
U33=U(NP3) ®U (NP3) cC 60
SQE84,D009U33=12,040%U13¢9.D40%U11 . . € 6l
U(NP2) 2 (160D40#U33=4,0408U134U11)/(2.040% (U(NP1) sU(NP3)) ¢DSQRT(SQ) € 62
)

Y (NP2) =Y (NP3) = (Y (NP3) =Y (NP1))# (UINP2) sU(NP1)=2,D¢0#U(NP3))#.5D+0/( C 63
1U(NP2) *U(NP1) U (NP3)) C 64
GO TO 10 C 65
U(NPZ)® (40 400U (NP3) =U (NP1 ) /30B00 oo c 66
Y (NP2) =Y (NP3) c 67
CONT INUE - . - Y
IF (NEQ.EQs1) GO TO 20 cC 69
00 19 J=1sNPH c 70
INITIAL PROFILES OF OTHER DEPENDENT VARIABLES c N
CONST=UEDGE®UEDGESTURBIN o
CONSFS=UEDGESUEDGE#TURBF S

TEDGEs]1,0¢0=UEDGE##2/2,D0

TAWTO=0,880¢0%(1,D¢0=TEDGE) ¢ TEDGE

IF (XHEATEQo0) TWTOSTANTO

D0 11 I=lsNP3 c 72
ETA=Y (1) /YSTART

IF (JoEQe1)F (Jo 1) =TWTO® (TANTO=TWTO)® (U (1) /UEDGE) ¢ (1,D¢0=TAWTO) ¢
1 (U(I) /UEDGE) ##2

IF (JoEQo2eANDGETAGLTo0003D40)F (JoI) mCONSTEDERF (72,3D¢0%ETA)

1F (JoEQe20ANDGETACBE+0403D40)F (JoI)mCONST#(1oDe0¢DCOS(3,161592650¢
10%ETA) ) /2,06 04CONSFS® (ETA=0403040)

o 1F(JeEQe2sANDLIGEQ.LIF (Je1) 50,000 e .
CONT INUE c 75
CALCULATION OF CORRESPONDING SLIP VALUES c 76
GAMA (J) 31 ,De0
60 TO (12913016)s KIN c 78
F(JvZ)‘F(Jol)O(F(doS)-F(J'l))'(1.0000BETA-GAMAtJ))/(I.DOOoBETA‘GAM c 79

7 W N D I R e e e e .
GO 70 15 c 80
GE(U(2)#U(3)=B,D+0%U(1))/(5,D00#(U(2)2U(3))1¢B.De0eU(1)) c 8l
GFa(1.D90=PREF (J) )/ (1,D¢0+PREF (J)) c 82
GFa(GeGF) /(1eD¢0¢GHGF) _ c 83
F(Js2)=F (J03) $GF ¢ (1,040=GF) ®F (Jol) C 64
60 10 15 - c_8s
F(Je2)mF (Jo1) c 86
IF (KRADGEQe0) F(Js2)m(6aDe0®F (Js1)=F (Js3))/3aD00 e c 87
GO TO (16517918) 9 KEX c 88
F (JoNP2) 8F (LJsNP3) ¢ (F (JoNPL)=F ({JoNP3) ) #(1,D00+BETA-GAMA (J))/ (1.D20¢ C B89
1BETASGAMA (J)) c 90
60 Y019 ... v c 91
63 (U(NP2) $U(NP1) =B,D¢0%U(NP3))/(5.040% (UINP2) ¢U(NP1)) +8,D¢0%U(NP3) C 92
)
GFa(1oDs0=PREF (J))/ (1,040¢PREF (J)) c 93
_GFm(GeGF)/ (1sDe09GHGF) . B cC 96
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BEGIN

F(JoNP2)=F (JoNP1l) #GF ¢ (1D 0=GF) @®F (JoNP3) C 95
GO 10 19 C 96
F(JoNP2)=(4,D408F (JoNP3)=F (JoNPL1))/3.De0 c 97
CONTINUE - L ...98
CONTINUE C 99
CALL DENSTY e c 100
CALCULATION OF RADII C 101}
CALL RAD (XUosR(1)sCSALFA) - - € 102
IF (CSALFAGEQ.00D20,0R.KRAD-EQ.0) GO TO 22 C 103
DO 21 I=2eNP3 - - c 104
R(IV2R(1)=Y(1)*CSALFA € 105
CHANGE MADE IN STATEMENT NUMBER 28 FOR INTERNMAL FLOW . C 106
GO TO 24 C 107
DO 23 I=2,NP3 - . € 108
R(I)=R(1) C 109
CONTINUE R, c 110
CALCULATION OF OMEGA VALUES C 111
OM(1)80,D90 R R € 112
OM(2)=0,D¢0 c 113
DO 25 IB3sNP2 C 114
OM(I)30M(I=])¢,5000# (RHO(I)®U(I)I®R(])*RHO(]= l)'U(I-l)“R(I l))'(Y(I C 118
l)eY(I=1)) c 116
PEI=0OM(NP2) ¢ 117
DO 26 I=3,NP1 . e — C 118
OM(I)=0M(I)/PEI C 119
OM(NP2)=]leDe0 e e o € 120
OM(NP3)=1,De¢0 Cc 121
IF (NEQeEQol) RETURN e c 122
DO 27 JmloNPH C 123
IF (KEXoEQel) INDE(J)=) C 124
IF (KINeEQel) INDI(J)=) C 125
CONTINUE c 126
RETURN C 127

- C 128
FORMAT(811+213)
FORMAT (BEl0.0) P C 130
END € 131~
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OUTPUT

SUBROUTINE OUTPUT J 1
IMPLICIT REAL®8(A=H,0=Z) - :
COMMON /GEN/ PElvAMI'AME’DPDXoPREF(Z);PR(Z),P(Z)9DEN9ANUQXU|XDyXPo J 2
e 1L o DR o XSTEP s CSALF A2 ALPHA XRoREQRS s GAMe ZETA2PPOe TUTO2 YSTARTUSUPID A 4

2IMENoIMEAT9ZoTOo INTG/V/U(200) oF (29200) 9R(200) sRHO(200) sOM(200) 9V (2 J 4
.2 300)/C/SC(200)0AU(200) 0BU(200)2CU(200)0A(20200)«B(2+200)9C(20200)/0 J 5§
4/YR(200) 9UR(200) sRR(200) sHR(200) 9 XM(200) sPETOT(200) y TEMP(200)/E/DS J - 6
STAR(300) »XRS(300) sRWRS(300) ¢+ COSAL (300)/1/NeNPLaNP2)NP3aNEQeNPHIKEX ~J . 7
GoKINoKASE.KRAD/B/BETA.GAMA(2)yTAUloYAUEvAJI(Z)oAJECZ)oINDI(Z)aINDE J a
742} C
l/F/ITURBol?RlNYvTURBINoTURBFSoIDELY
e IF (INTGoNEo.1) 60 VO } - R —_— — -l 10
DO i4 I=]1,NP3 )
-16 YRUI)=20eDe0 . P - e
ALBALPHA®180,D¢0/3,1415926504+0 J 11
_— - MRITE. (67). (OMAI)sImleNP3) . . . . __ .12
HRITE(6»6)KRAD;IDIHEN.NEQcKEXoKIN.XHEAYvITURBleELYoIPRINToN
... XRS(300)80,De0 . e — U B,
1 CONTINUE J 14
IF(DFLQAT(INTG'I)/DFLOAT(IPR[NT)oNEoDFLDAT((INIG'I)JxPRINT)’REYURN”.,m -
DPDXG=DPOX®GAM/ (GAM=1,D*0) J 18
_JF (KRADEQ.0) DS _ sY(NRPI)=PEI/(A(])eRHO(NPI)SY(NP]I))
IF (KRAD.EQ.0) 60 70 2 J 17
Ds 2R (1) =0SQRT (R(1)0#2=2,D¢0#CSALFA%(R(1)®V (NP3} =0,5D20%CS .
1ALFA®Y (NP3) ##2=PEL/ (RHO(NP3) ®U(NP3) ) ) ) J 19
e —. IF (CSALFA.NE.0+00¢0) DS - BDSTAR(INTG) ZCSALFA = . .. '
e CONTINUE J 21
— DO 3 I=}.NP3 J_23
TEMP (1) =F (19 1) =U(1)#92/2,D¢0 J 26
e XML T UL L) /DSQART( (BAM=] o De Q) #TEMP (L)) J .25 _
XS@BXM (1) ea J 26

e IF {XM(1)alBeloe0De0) PITOT(I)B()eDe0e(CAM=],000)8XSQ/2,De0)R8(GAM/ J 27 ..
@ (GAM=10020)) v

—  IF (XM{I)elLEolo.0D¢0) GO TO 3 : J 28
PITOT(1)=((GAM®1+D0)®XSQ/2,000) ## (GAM/ (GAM=],De0)) J 29
PITOT(L)aPITOT (1) #((BAM] ,De0)/(2,000#6AMEXSQuGAM],De0))88(],De0/ .. 30.
'(GAM-loOOO))

3 CONTINUE' . .3y
$Q2=DSQRT (2,040) J 32
DO_6 Im) NP3 _ J 33
PITOT(I)=PITOT(1)/PITOT (NP3) J 34
e UR(D)BUCI)ZUNP3) .. . - : 36
RR(1)aF (201)
. MR(D)SULED/S02 . ... 38.
4 CONTINVE J 39
IHETABO D0
00 15 KL®3,N
1S . _THETARTHETAe (TEMP (NP3)/TEMP (KL)SUR(KL)I®(1,De0eUR(KLIYS . ...
1 TEMP (NP3) /TEMP (KLe1) ®UR(KL®1)®(1.Do0=UR(KL®1)))/2oD00®(Y(KLel)=
o eYRLYY — e S
THETABTHETA®TEMP (NP3) /TEMP (3) SUR(3) ® (1,D40=UR (3) ) 72,0400 (3) o
1 TEMP (NP3) LTEMP (NP]1) @UR(NPL)® (] oDe Q=R (NP)) ) /2,008 (Y (NPI) oY
*NP1) )
- CEBTAULZ(HR(NPI) S920RHOINBI)) _
WRITE (6+8) J 60

—— HRITE(6012) INTGe AU ZoREORS s GAMePRI1) 2 ZETA2 TURBEIN TURBES,
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QUTPUTY

1 USTAR(300) ¢ XL

WRITE (6+13) AJI(1)oDS
1 CFoTHETA

WRITE (6+9)

DO 5 I=1sNP3s2

WRITE (6911) (Y(I)oF (1loI)oURCI)oHR(I)oR(1)sRHO(I) o YR(I)oXM(I) o TEMP
1(I)sRRUL) 4PITOT (1))

CUNTINUE

WRITE (6910) (Y(NP3)sF{(1sNP3)sURINP3I) 9sHR(NP3) sR(NPI) yRHO(NP3) s YR(N
1P3) o XM(NP3) s TEMP (NP3) oRR(NP3) »PITOT (NP3))

WRITE (6499)

RETURN

yPEI s AME ¢DPDXGoDX s XRS(300) o USUPPPOs

FORMAT (//7/77/779+20Xs *THE INPUT FLAGS ARE'®9///925X» *KRAD a ¥,1],
1/7+25Xe YIDIMEN = 99119//025X9 'NEQ a8 Y4,1)9//92500 'KEX 2 511
2//925X9 *KIN ® V9]10//025Xe 'IHEAT & %p1le//025Xe'ITURB = 99]]s
®//925K9 VIDELY = 9,411, .
3//7925X VIPRINT = 9,134//25X9'N = 1,13)

FORMAT (24H)1THE VALUES OF OMEGA ARE/(1P10Ell.4))

FORMAT (1H1 94X *INTG  9OXo " XUV911Xe?Z79X9o "REORS? 97Xy 'GAMMA® o BX o 'PR?
1o9Xo 'ZETA'98Xo *TURBI'97Xo *TURBE Y 96X 9 'DELTAY 99Xy
1 'XL'/o6Xe QW' 99Xs DS
2TARY 9BX o 'PEI" 99X VAME ' 9BX o 'DP/DX"oBXp'DX198X0? REX "97X9'USUP?,,8X
30'P/P0OYe9Xe'CFY'9BXy *THETAY/)

FORMAT (6X o 'Y 99X o "H/HO 99X 'U/UE " 9BX o 'U/ZUMI 99Xo "R1010Xe"RHO" 510X
10YL "oOXe™P0llXo?To9l0Xs E/HO o TX'PITOT?/)

FORMAT (1P11E12+54/)

FORMAT(1P11E12,5)

FORMAT (IBe4Xo1Pl0EL204)

FORMAT ( 1P11E12664//)

END
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SOURCE

SUBROUTINE SOURCE (JOI’CSQDS)
" TMPLICIT REAL®B(A=H,0=2) - T ’ T
COMMON /GEN/ PEI¢AMIoAMEsDPDXyPREF (2) sPR(2) ¢P(2) yDENsAMUsXUsXDoXPs A 3
T TIRL DX 9 XSTEP ¢ CSALF A ALPHA» XRyREORS o GAM» ZETAsPPU» TWTOs YSTARTSUSUP ID A &
2IMEN IHEAT o ZoTOo INTG/I/NoNPLsNP2oNPIoNEQsNPHoKEXsKINsKASE9KRAD/B/B A )
T T 3ETAYGAMATZ) s TAUT + TAUEZAJT T2 o AJE(2) o INDI (2 s INDE(Z) /V/7UT200) sF (292 R &
400)9sR(200) sRHO(200) oOM(200) oY (200)/C/SC(200) 9AU(200)9BU(200)CUC20 A 4
50)0A(29200)9B(29200)9Cl29200)/D/YRT200) ¢URT200)yRR{200)yHRT200) e XM A 8
6(200) yPITOT (200) 9 TEMP (200) /E/DSTAR(300) ¢ XRS(300) sRWRS(300) 9»COSAL(3 A 9
I £ ) A 10
IF (JeGTol) GO TO 1
CS=SCTI e (U{Te ¥ UTT+ =0T ®UTIT T 7(ORT{T+ 1T =0MT(T))
C52CS=SC(I=1)8(U(1)2U(I)=U(I=1)®U(]=1))/(OM(]1)=OM(]= 1))
B CS2(1.D40=1,00/PREF (J)IBCS/(OMTT+ 1) =0M(T=1)) ~ ~ 7
DS=0,0¢0
TRETURN T T
1 CONTINUE
T TAF({Te6Y.37G0 YO 3
REX=DSQRT (PPO#& ((1,D¢0=GAM) /GAM) = 1,020)2PPO## ((GAM®1.D+0)/(2,D00%G
T1AM) = 2ETAS (GAM=T,D+0)/GAM)
REX=REORS#XD#REX
TRRS(300)=REX T T
CON=3,10040-1,820=09%REX
T IF{CONLT:2.TD+0)CONE2, 7020
3 " CONTINUE
7T DELTA=DSTAR(300)
ETA=Y (1) /DELTA
TIF{ETACLE.D0.2040) YLEY (T)
IF(ETAoGTo002D¢00ANDETALEc0o4D*0)YL2Y(])/2:D0090,1D+0*DELTA
IF(ETAGTo0.4Ds0,ANDETALE.0.5D+0) YLE0.,3D*0#Y (L) +0,18D¢0%DELTA
IF(ETASGT 4045040+ ANDGETACLEs0e6D+0) YLE=0,1D+0%Y (1) +0438D+0#DELTA
IF(ETAGGBTo0,6D¢0sANDeETAGLEC0s7D¢0) YLE=0,2D¢0#Y (1) 20.44D+0%DELTA
IF(ETAeGTo06o7TD¢00ANDSETA0LE-068D¢0)YL2=0,4D¢0%Y(1)+0.58D¢0®%DELTA
T U IF(ETACGT 0.8D¢0)YLE (=Y (1) 01.424D40%DELTA) /72,4040
YR(I)=YL -
IF (T.EQ. T ORI EQ.NP3) C5=0,0¢0
IF (16EQs1a0RIEQ.NP3) GO TO 2
CALL VEFF(lelelsEMU) A T T
CS= (U(lsl)=U(]~ 1))/(0"(1’1)‘0"(1 l))“R(I’/PEI
CSsCS#032D604RHO(I)®F (201) o e T
CS=CS=EMUBF (291) /7 (RHO(I)®U (1) #YL®YL)®CON
2 CONTINUE
BEE=o32D20#PEI/(U(I)OR(I) @ ((U(I+1)=U(I=1))/(OM(14]1)=0M(I=1))))

 DS=CS/F (2¢1) =EEE
RETURN
END
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READY

SUBROUTINE READY E

IMPLICIT REAL#8(A=Hy0=2) . -

COMMON /GEN/ PEIOAMIOAME.DPDXtPREF(Z)099(2)op(Z)ODENQA“UQXUlXD’X?O €
1XL e DX o XSTEP s CSALFAoALPHA9 XRsREORS 9 GAMe ZETAsPPD e THTIN. YSTART o UUSUPID A ¢
2IMEN) IHEAT9Z9TO» INTG/V/U(200)oF (20200) oR(200) 9RHO(200) sOM(200)sY (2 E 4
300)/71/NoNPLoNP29NPIsNEQoNPHIKEX 9 KINe KASE: KRAD/B/BETA2GAMA(2) s TAUXs E 8§

r"" -

4TAUESAJI(2) 9AJE(2) 9 INDI(2) 9 INDE(2) E -]

- CALL DENSTY - . E T
CaLL RAD (XUsR(1)9CSALFA) € 8

€ _Y NEAR THE I BOUNDARY . . _ e — £ 9
GO 70 (19293)9 KIN 10
1 Y(2)2(1aD¢0+BETA)®0M(3I)®4,D¢0/((3.D+02RHO(2) ¢RHO(3) ) ® (U(2)+U(I))) 11
G0 TO 6 12
2 Y(2)=12,0404#0M(3)/((3,D¢0%RHO(2) +RHO(3) ) ®(U(2)eU(3)*4.De0%U(1))) . 13
60 TO 4 14

-3 _Y12)8,50¢020M(3) /(RHO(L)®U(])) ~15
4 Y(3)'Y(2)OoZSDOO'OM(B).(1.000/(RH0(3)'U(3))‘2.000/(RH0(3)“U(3)0RH0 16
1¢2)=2u(2))) 17
c Y S FOR INTERMEDIATE GRID POINTS 18
DO 5 I=49NP] 19
5 Y(I)8Y(I=1)¢o5D¢0® (OM(I)=OM(I= l)’“(I.DOOI(RHO(I)'U(I))010000/(RH0( 20
— ll=l)®U(]el))) . — — ——.E 21
c Y NEAR THE E BOUNDARY 22

Y(NP2)3Y (NP]1)¢,25D¢0% (OM(NP2)=OM(NP1))®(1,D¢0/(RHO(NPL)®U(NPL))*2,
1040/ (RHO(NP1) #U(NP1) ¢RHO (NP2) #y (NP2) ) )

60 TO (60708)0 KEX 25

6 Y(NP3) =Y (NP2) o (1,D00+BETA)®* (OM(NP2)=0M(NPL1))®4.D¢0/ ((RHO(NP1)+36De¢ 26
—  10*RHO(NP2))# (U(NPL)eU(NPR))) _ .. .27
60 70 9 28

7 Y(NP3)aY(NP2)¢12+0¢0% (OM(NP2)=0M(NP1))/ ((RHO(NP1)+3,D+02RHO(NP2))*® 29
1(U(NP2) U (NP1) ¢4,0¢0%U(NP3))) 30

60 70 9 31

8 Y(NP3)BY (NP2) ¢o5D¢0® (OM(NP2) =OM(NP1) )/ (RHO (NP3) #U (NP3)) 32
—9  IF (CSALFA.EQ,0,D¢0.0R.KRAD.EQ.0) GO TO 11 33
c XXX IS USED TO KILL SHOT IF NECESSARY" 34

DO 10 .Im2eNP3 S -
XXX'R(I)*R(I)-2.000'7(1)'PEI'CSALFA

N
&

e IF (XXXelLTe0s0D20) XDm2.De0®#XL 37
IF (XXXeLT0000D¢0) GO 7O 146 38

! {1)m2,004Y () @PET/(R(L)*DSORT(R(1)®R()})=2,DeuY (J)WPFIOCSALFA)) E 39
c CHANGED SIGN OF 2 IN THE DENOMINATOR OF ABOVE FOR INTERNAL FLOW E 40
. _ GO TO 13 - i E &)
11 DO 12 I=20,NP3 E 42
12 Y(D)sPEIeY(I)/R(Y) ... ... .. . e i e —— B 63

13 Y{2)22,0000Y(2)=Y(3) 64
— Y(NP2)m2,0608Y (NP2)=Y (NP]) 3:1
c CALCULATION OF RADII 46

. DO 16 Is2yNP3 _ _ S e
IF (KRAD.EQ.0) R(I)mR(1)
N IF (KRADONE,0) R(I)SR{1)=Y{I)®CSALFA. _ .. B
c CHANGED SIGN IN EXPRESSION ABOVE FOR INTERNAL FLOW
16 _ CONTINUE . R

mmnmmmmnhmpm
&
")

1F (R(NPS).LE.0.0DOO) XDm2,000@xL 52
— - . IF (Y(NP3)slLT 0:0040) XD=2,De0®XL. . s . e, 53
RETURN 84
_END 58=
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VEFF

SUBROUTINE VEFF (I+1IP1oEMU) P

IMPLICIT REAL®8(A=H0=2)

COMMON /GEN/ PEIOAMI.AME;DPDX.PREF(Z)oPR(Z)oP(Z’ODENOAMUQXUQXDOXPO P
1AL oDX o XSTEPsCSALFA)ALPHAsXRsREORS 1 GAMs ZETAsPPOTHT0. YSTART o USUPID A
ZIMENoINEATQZOTO'INTG/V/U(ZOO)vF(EoZOO)QR(ZOO)vRHO(ZOO)oOH(ZOO)oY(Z P
300)/I/NoNP1oNP2oNP3IsNEQsNPHoKEX 9o KINe KASE s KRAD . -

TeF(lel)=U(])®e2/2,D¢0

TT=F (1eIP1l)=U(IP))#42/2,0¢0

Ta(TeTT)/2sD00

EMUsTo®ZETA/ (REORS/DSQRT (2.D¢0))

IF (I1,EQole.OR,I.EQ,NP3) RETURN

EE=0,30+02RHO(I1) #F (29 1) *PEL

EESEE/ (RHO (L) oU(I)8R(I)®(U(fel)=U(]~ l))/(OM(I*l)'OH(I'l)))

EMUSEMUEE , S

RETURN P 10

END P e

3

VDV O
DN WMe SN

VISCOo

" FUNCTION VISCO (1) ' Q

® L L.T4 N, e .

COMMON /GEN/ PEIoAMIoAME sDPDXyPREF (2) 9PR(2) 9P (2) sDEN9AMUsXU9XD9XPy» @

AL o DX XSTEP . CSALF A ALPHA XRoREORS 1 GAM9 ZETA2PPO2 THTOaYSTARTSUSUPSID A
ZIMEN!IHEﬂT!Z'TOOINTG/V/U(ZOO).F(Z'ZOO)'R(ZOO)ORHO(ZOO)’OM(ZOO)'Y(Z

_300)/1/NoNP)oNP2oNPIoNEQoNPHoKEXo KINo KASEsKRAD

L]

TF(lel)=U(])®®2/2,De0
__V1ISCO=T#8ZETA/ (REORS/DSART (2.D00)) . .
IF (1.EQoloOReIEQ.NP3) RETURN
_EEm0,3D¢0*RHO(I)OF (2. 1) 9PF X
EE.EE/(RHO(I)'U(I"R(l).(U(l‘l)'U(!'l))/(0"(1‘1)'0"(1'1)))
VISCOIVISCOOEE X o - -
RETURN . Q@ 8
_END

[ XN >N ]
NGRS SN

FBC

SUBROUTINE FBC (XsJoINDsAJFS)
IMPLICIT REAL®S(A=He0eZ)
COMMON /GEN/ PElvAMI'AMEoDPDx.PREF(Z)oPR(Z)oP(Z)oDENoAMUvXU.XD:XPo
e 1ALeDXsXSTEP.CSALFAsALPHASX
2IMEMo EHEAT 929709 INTG/V/U(200) sF (29200) sR(200) oRHO (200) 9OM(200) oY (2
_ 200 e
c Tw IS PRESCRIBED IF IHEAT = 1 == QDOT IS PRESCRIBED IF NOT 1
. Inp®l N
AJFSETUTO
IF (IHEAT.EQa1) 60 70 1
IND=2
, AJFS=0.0080
1 CONT INUE
~ IF (J.ED.1) RETURN
InD=]
o AJFSBF(Jel)
RETURH - - W12
_END

IEXIEXTITI | X| X
o—r:orﬂrm SR -

[

:
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COEFF

SUBROUTINE COEFF
_ IMPLICIT REAL®B(A=HeO=Z) _

AEDC-TR-76-62

)

1

COMMON /GEN/ PELsAMI¢AMEsDPOXoPREF (2) sPR(2) +P (2) yDENsAMUoXU9sXDsXPy D e
A _4&

o AXL DX XSTEP-CSALFA-ALPHAsXRoREORS«GAMeZETAPPOoTWTOYSTART2USUPoJID
2IMEN) IHEAToZoTOs INTG/I/NoNP1oNP2oNPIsNEQoNPHoKEXoKIN9KASEsKRAD/B/B D 3
. __ 3ETA.GAMA(2) e TAUL.TAU 5
QOO)oR(ZOO)oRHO(zoo)oOMtZOO)oY(ZOO)/C/SC(?OO)'AU(EOO)oBU(ZOO)oCU(ZO D 6
. ._...50)eA(2:200)0:8(2:200)2C(2:200) - R D 7.
COMMON /L7 AKoALMG D - 8
‘ 13(200) D 10
€ . CALCULATION OF SMALL C °S D 11
i DO 1 Is2oNP1 D 12
l._. .. RAm.5De0®(R(Ie})eR(])) D313
RH2,50¢0@ (RHO (1)) ¢RHO(])) D 14
UM .5De0®(U({lel)eUi(])) D 18
| CALL VEFF (loIeleEMU) D 16
~ 1 . SC(1)sRA®RA®RHOUMSEMU/ (PET®PE]) D 17
. € THE CONVECTION TERM D 18
— SABR(1)®AMIZPEL D 39
: SBa (R(NP3)2AME=-R (1) ®*AM]) /PEI D 20
DXmXDeXU D21
DO & I=3oNP] D 22
. . OMD=OM(]¢1)=0M(l=]) D 23
P2=,25040/DX . D 24
- — - P3=P2/0MD = . D 28
PIH(OM(IOI)-OM(I))'P3 D 26
— e P3s(0M(])=0M(I=l))®P] D 27
P2e3oDe0epP2 ‘D 28
e PBSA/OMD D29
R2m=SB# 25040 D 30
. R3=R2/0MD D 31
1--(0M(101)03.00000M(l))“RB D ‘32
® 0 _ 33
Gl(l)-P1¢O0RI D 3¢
. 082{1)8P2eR2 D 35
63(1)esP3=QeR3 D 36
CUllls=Pley(le])=P2oy(l)=PI0U(fol) D37
(o THE DIFFUSION TERM D 38
D 39
BU(1)8SC(I=1)*AU(E)/(OM(T)=0M(I=1)) D 60
I \TT ) DAY
IF (NE@.EQel) 60 70O 3 D &2
..DO 2 Js} o NPH D43
C(Jol)l'Pl'F(Jol‘l)-?Z'f(J'I).P3°F(JQI'1) D &4
Jal)) D48
. ClJoel)anClJel)eCS=F (Jo1)®D(Jo 1) D 46
e A{Je 1) ®AULT)/PREF () D &7
B(JeI)=BU(L) /PREF (J) D 48
——CONTEINUE D49
c SOURCE TERM FOR VELOCITY EQUATION D 50
—3  sl(il)=DPOX®DX D81
S2(1)=P2e5]) (1) /7 (RHO(I)®U(L)) D 82
.. 8341} 0P3ES (1) /(RHO(f=] ) B (=]) ) D 83 .
SI(I)=PleS) (I} /(RHO(Je])®U(Tel)) D S5s&
G BeCU(I)=2,D000(S1 (1) eS2(F)0SI(T)) D 8§
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80

COEFF

S1(I)1=S (1) /U(l*]) D S6

s2(l)=sS2(I)/U(l) D 87

§3(1)8S3(1)/U(l=1) D 58

CONTINUE _ . __ D 59

COEFFICIENTS IN THE FINAL FORM D 60

DO 5 I=3,.NP1 — D &)

RL'I.O*O/(GZ(I)0AU(I)¢BU(I)~52(I)) D 62

AU(L) = (AU(I) ¢S1(1)=G1(I))®RL . D 63

BU(I)=(BU(I)+S3(1)=G3(I))=RL D 64
S CUtI)=CULT)»RL D_68%

IF (NEQeEQel) 60 TO 7 D 66

DO 6 JmleNPH . __ ___ D 67

DO 6 I=m3,NP]} D 66

RLEL1 D0/ (G2(1)+A(JeX) B (Je)mD(JeX)) D89

AlJeI)B(A(J91)=BL(1))%RL b 70
~Blde1NB(B(Je])=GI(]))@RL 073

C(JsI)=C(JoI)®RL D T2

CALL SLIP [ D73

RETURN D 7s

END - D 78«

DENSTY

SUBROUTINE DENSTY F i

IMPLICIT REAL®8(A=H¢0=2)

COMMON /GEN/ PEIOAMIOAMEODPDXQPREF(?)OPR(Z)QP(Z)ODENOAMUOXUQXDQXPO F 2
IXL o DX o XSTEPCSALFAsALPHAS XRyREQRS e GAMe ZETAPPO-THTO. YSTAR
ZXMENQIHEATOZOTOOINTG/V/U(ZOO)oF(ZvZOO)QR(ZOO)QRHO(ZOO)OOM(ZOO’OY(Z F 4
300)/71/NoNPLoNP2yNPIsNEQINPHIKEX o KIN9KASE e KRAD F_.._ 85

TNPIZF (1oNP3) =U(NP3) #02/2,D00 F 6

RHONP3I=TNPI®# (1 ,D40/ (GAM=1,0¢0)) FE 7.

D0 1 I=mloNP3 F 8

TaF (lel)=U(1)®2®2/2.D%0 - £ 9

RHO (1) sRHONPI@TNP3/T F 10

RETURN . .. F 11 .
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ENTRN

SUBROUTINE ENTRN 6 1
o IMPLICIY REAL®B (A=HeQ=27)

COMMON /GEN/ PEI¢AMIoAMEDPDXoPREF (2) 9PR(2) 9P (2) 9DENsAMU9XUsXDoXPs 6

2
2IMENy IHEAT 929 TOo INTG/V/U(200) 9F (29200) sR(200) sRHO(200) o OM(200) Y (2 6 6
6

. _30
1 60 TO (29396) 0 KEX 6
2 RETURN 6 7
3 CONTINUE 6 8
< ; G 9
IF (INTGeNE,1) GO TO 5 . 6 10
DO 4 I=].NP3 6 11
IF (OM(I)e6GTe09D20) N9=] 6 12
IF (OM(])2GTa0o9D¢0) IshNP3 6 13
4 CONTINUE G 16
— DOMBOM(ND)=OM(NQ=]) 615
DOMOBOM(ND) =0,90+0 6 16
8 CONTINUE G 17
U9-U(N9)-DOMO/DOM*(U(N9)-UtN9-1>) ' G 18
® Q 19
R9-R(N9)-DOM9/DOM“(R(N9)-R(N9-1)) 6 20
a8 1)) 623
VIS9=VISC0(N9)-DOM9/DOM0(VISCO(N9)-VISCO(N9-1)) 6 22
] ® ) Q) [ I 21__f
CUUP-CUUP¢R99R90RH090U9'VI59 . 6 26
CUUPBCUUP/ (2.De0®PET) 628
CUUMBR (N9=]1) #R(N9=1) ®RHO (N9=1) #U (N9=]) #VISCO (N9=1) 6 26
CUUMBCUUMeROSRQSAHNO#IIQ®Y 159 G 27
CUUMHCUUM/(E.000*PEI> 6 28
9) , 629
GesZ.DOOOCUUM/(DOMO(0.90*0-0"(N9-1))) . 6 30
-llQ}-ﬂﬁO(]lQ-l”Ng-l) 1 G_.‘!.L__
TERMA-TERMA/TERMB 6 32
& (] 8-
C USUP 1S READ=IN IN BEGIN IT SUPPRESSES THE Bol.o 6 34
—  TERMCEe(UOMWIG=UR)/DXeDPDX/ (RHOBU) 6 38
TERMCaTERMCEPEI/TERM8 6 36
— AMFsTERMASTERMC 6 37
AMEBAME=0,1D¢09%R (1) ®#AMI 6 38
) a8 39
RETURN 6 640
—6  AMERQ,DeQ B4}
RETURN 6 42
B 43w
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MASS

SUBROUTINE MASS (XUeXDoAM)
IMPLICIT REAL#8(A=Hy0=Z)

C APPLICABLE TO AN IMPERMEABLE'UALL SITUATION
. AM‘O.D‘O e e

RETURN
EnD —

PRE

SUBROUTINE PRE (XoDPDXX)
IMPLICIT REAL¥B(A=H90=2)

COMMON /GEN/ PEL+AMI»AMEsDPDXsPREF (2) sPR(2) yP(2) sDENsAMUSXUsXDsXPy K

VLR B TV

K1

P

o 1XL DX ASTEPCSALFAsALPHASXRoREORS 2 GAM2ZETA+PPO-THTO.YSTARTUSUPLID A 6

2IMEN) IHEAT 9290709 INTG/V/U(200) 9F (29200) 9R(200) sRHO(200) s OM(200) oY (2 K
300)/7I/NeNPLaNP2oNPIsNEQoNPHoKEX s KINe KASE s KRAD

DIMENSION XX (300)s POP(300)
IF (INTG.NE.,0) 60 TO 1
READ (5903) LMAX
——— READ (Seé) (XX(L)oPOP(L)el=lelMAX) .

WRITE (695)
WRITE (6e6) (XX(L)sPOP(L)olslmloLMAX)

1 CONT INUE
Lal
2 CONTINUE
— A=mLel

; .
Pt b Pud

IF (XX(L)oLToX) 60 TO 2

e DPDXB(POP (L) =POP (L=1)) Z (XX (L) =oXX(L=1})

PPOBPOP (=1) *DPOX® (X=XX (L=1))
DPDXX=0PDX
DPDXX=2DPDOX® (GAM=1o020) /GAM

. RETURN e

XERARXKXR XK XX
o s 0 o
& Nr-OFQOfiorﬂ&

K__17

" 18
.19 .
20
21

C
-3 FORMAT(13)
4 FORMAT (2E12,0)
] FORMAT(1H1o0/08Xo'X9012Ke 'P/P0Q%s/)
6 FORMAT({1P2EL1%:5016)
... . END
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RAD

SUBROUTINE RAD (XsR19CALPHA)
IMPLICIT REAL®8(A=Hy0=7)

AEDC-TR-76-62

COMMON /GEN/ PELoAMIsAME sDPDX+PREF (2) oPR(2) sP(2) sDENsAMUs XUs XD o XP»
1XLsDX9XSTEP 9 CSALFA9ALPHA s XRyREQRS 9 GAM9 ZETA2PPO s THTQ YSTART »USUPy 10D
2IMENo IHEAT»Zo TOs INTG/V/U(200)9F (25200) 9R(200) ¢RHO(200) s OM(200) »Y (2

300)/1/NoNPLoNP2 e NPI¢NEQINPHoKEX s KIN9KASE s KRAD

APPLICABLE TO NOZZLES WITH CONSTANT LONGITUDINAL RADIUS OF
CURVATURE OF THE CONVERGING SECTION= CONSTANT WALL HALF ANGLE OF
DIVERGING SECTION=AND WALL SLOPES MATCHED DOWNSTREAM OF THE THROAT

IF (INTGeNE.Q) GO TO 1
PI2E3,161592650¢0/2.,D¢0
ALPHASALPHA®PI2/90,D¢0
COSALF3DCOS (ALPHA)
SINALF=DSIN(ALPHA)
2WiG=XR® (1,090¢SINALF)
XuIGeXR® (PI2+ALPHA)
RWIG31,De0¢XR®*(1,D¢0=COSALF)
CONTINUE

IF (XoeGEoXWIG) GO TO 2
R(1)2]1,0¢0+XR®(1,0+0=-DSIN(X/XR))
CSALFA=DSIN(X/XR)
CALPHA=CSALFA

R1=R(1)

2Z2XR# (1,D40~DCOS(X/XR))
GO T0 3

CONTINUE
R(1)B(X=XWIG)®SINALFeRWIG
CSALFA=COSALF
CALPHA=CSALFA

R1=sR (1)

22= (X=XWIG) #*CSALFA+ZWIG
,CONTINUE
IF(IDIMENL,EQeQ)R1=]1,0e0
224=22-XR

=227

RETURN

END

>
|
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SLIP

SUBROUTINE SLIP

_IMPLICIT REAL®8(A=He0=Z).

COMMON /GEN/ PEIsAMI+AME sDPDXsPREF (2) sPR(2) yP (2) sDENsAMUsXUs XD s XP s
_ 1XLeDXoXSTEP9CSALFAoALPHA 9 XRIREORS»GAMoZETAsPPOs THTQ2YSTART s USUP 1D
2IMENS THEAT+Z9TOo INTG/I/NsNP1sNP2 NP3 oNEQoNPHKEX s KINs KASE s KRAD/V/U
3(200) 9F(29200) sR(200) s RHO(200) sOM(200) 2Y(200)/B/BETA:GAMA(2) 2o TAUI s .
4TAUE-AJI(2) 0 AJE(2) 9 INDI(2) » INDE(2)

.COMMON /L/ AK»ALMG/C/SC(ZOO)oAU(ZOO)aBU(ZDO)'CU120011A121200)oB(2:
1200)0C(20200)

_€C _SLIP COEFFICIENTS NEAR_THE I_BOUNDARY FOR VELOCXTY EQUATION

x
-

ZTTXT_X
>
o~NoUws LN

0
1

CU(2)=0aD¢0 10

T CU(NP2)=0.D¢0 U 11.
GO TO (19203)9 KIN 12

S § BU(2)=0.D+0 e ——— e 13
AU(2)=160¢0/(16De042,0¢0%BETA) 14

e .60 T0.5. . 15
2 SQ=86,040%U (1) #U(1)=12,D40%U(1)#U(3) ¢9,De0%U(3) %0 (3) 16

BU(2)38,040%(2,D¢09U(1)¢U(3))/(2s000¢U(1)27,De0%U(3)+DSQART(SQI)

AU(2)=],040-BU(2) 18
60 T0 5 e e s e 19
3 BU(2)=0.0¢0 20

e CALL VEFF (2235EMU). -
AKl'l.D*O/DX-DPDX/(RHO(1)'U(1)'U(1))
AK2==U (1) ®#AKL+DPDX/ (RHO(L)QU(Y))
AJERHO(1)#U (1) #,25D040# (Y (2)eY(3))@e2/EMV

TXZXTTIXIITTIIIITIIETX
[y
-~

IF (KRAD.EQ.0) GO TO 4 e e 25
AU(2) 82000/ (2,D¢00AJ®AK]) 26
.. CU(2)B=,8D+02AJRAK2RAU(2) . _ . M 27
60 70 5 M 28
4 CU(2)=21sDe0/(2,D40¢3.008AJ%AK1) . - M 29
AU(2)3CU(2)#(2,D¢0=AJ®AK]) M 30
CU(2)3=CU(2)®4,De0RAJPAK2 e M. 31
c SLIP COEFFICIENTS NEAR THE E BOUNDARY FOR VELOCITY EQUATION M 32
5 . GO TO (6e7+8)9 KEX. . _._ M 233
) AU(NP2) 20,040 M 34
BU(NP2)21s0¢0/(1.D¢0¢2,D+0®*BETA) . .. : ..M 35
GO 70 9 M 36
LT . SQ@m84,De0®U(NP3)PU(NPI)=12,D¢0#U(NP3)SU(NPL) ¢9.De0®U(NP]) ®U(NPL) . M 37
AU(NP2)28,D00%(2,D¢0#U(NP3) *U(NP1))/(2,0¢0%U(NP3)¢7,D0¢0#U(NP1)+DSQ M 38
— _®RT(SQ))
BU(NPZ)'!-DOO-AU(NPZ) M 39
: 60 T0 9 - - M40
8 AU(NP2)30,0+0 . M 6}
CALL VEFF (NPLoNP2eEMU). M__62
BKl-loD*O/DX~DPDX/(RHO(NP3)'U(NP3)'U(NP3)) M 43
—  BK2me|(NP3)4BK]1eDPDX/(RHO(NPI)®|(NP3}) M_4é
BJmRHO (NP3) ®U(NP3) #,25D00# (2,D¢0#Y (NP3) =Y (NP1) =Y (NP2)) #82/EMU M 45
CU(NP2)=1.De0/(2:00023,D¢00B.J%BK]) . e .M 46
BU(NP2)BCU(NP2)® (2,D¢0=BJ®#BK]) M &7
— CU(NP2)=s=CU(NP2)®4,De0®BJ®BK2. .. . .M 68
9 IF (NEQe.EQ.1) RETURN M 49
€ SLIP COEFFICIENTS NEAR THE I BOUNDARY FOR OTHER EQUATIONS = M S0
00 20 J=)]oNPH M 51
C(Je2)20,De0 . e e M. 52
C(JoNP2)0,D*0 M 53
_G0 TO (10212:213)e KIN - o e M_S4
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CaLL FBC (XDsJo INDI(U) Q1) M 55
IF (INDI(J)oEQel) GO TO 11 M 56
AJl (J)=Ql M 57
AlJe2)=1,D¢0 o R — - M 58

B(J92)20.D¢0

ClJo2)=BeD*0%*(1.D¢002,D+0%BETA) *PREF (J) *AJI(J)/ (AKCAKHBETA® (1,000

1BETA)#(1,D¢0¢BETA) #(3.0¢0%RHO(2)+RHO(3))®*U(3))

[ s R
- OO

M
M
M
60 70 15 M 62
F(Jol)=Ql M 63
A{Js2)8(1,D¢0+BETA=GAMA(J) )/ (1.De0¢BETA*GAMA (1)) . M_66.
B(Je2)8leDe0=A(Jr2) M 65
60 70 15 M 66
A(JU92)=(U(2)¢U(3)=8,De0%U(1))/ (5, D‘O“(U(Z)*U(a))oe 000“0(1)) M 6T
GF=2(1oDe0=PREF (J))/(1eD¢0+PREF (J)) M 68
A(Je2)B(A(J92)+GF)/(1.,D¢00A(Js2) 2GF) M 69
B(Js2)®loDe0=A(Js2) . M 10
GO Y0 15 Mo 71
B{Je2)=0,D¢0 M T2
CALL SOURCE (Jsl9CS,DS) M 73
AK1=1,D40/0X=DS M T4
AK2==AK1®F (Jo]1)=CS M 75
AJFEAJSPREF (J) R e _ _ M. 76
IF (KRAD.EQ.0) GO TO 14 M 77
A(J22)52,D¢0/(2.D20¢AJUF#AK]) M T8
C(Je2)==o5D¢0#AJF#AK2%A(Js2) M 79
G0 TO 15 M 80
C(Je2)=1.De0/(2:02063,D200AJF*AK]) M 8]
AlJe2)3C(Je2)2(2,De0=AUF®AK]Y) . e . M_ B2
C(Js2)3=C(Jo2)#6,D00%AJFRAK2 M 83
SLIP COEFFICIENTS NEAR THE E BOUNDARY FOR OTHER EQUATIONS M 84
GO TO (16918919)s KEX M 85
CALL FBC (XDesJoINDE (J)oQE) e M 86
IF (INDE(J)EQ.l) GO TO 17 M 87
CAJE(J)=QE . A — M __ B8 __
B(JsNP2)B1,De0 M 89
A(JoNP2)=0,De0 M 90
C(JoNP2) =8, D#O*(l.D*o*E.D~O°BETA)'PREF(J)'AJE(J)/(AK“AK’BETA'(I.D Mo 91
190¢BETA)®(1.D40+BETA) # (RHO(NP1) +3,D¢04RHO(NP2) ) #U(NPLY)) M 92
G0 70 20 M 93
- 17— E{JeNPI)=QE [P M_ 96
B(J:NPZ)=(1.D¢0~BEIA GAMA(J))/(1.D¢o~BETAOGAMA(J)) M 95
A(JoNPR2)2leDe0=B(JoNP2) —— . M98
60 70 20 M 97
B(JoNP2) B (U(NP2) ¢U(NPL) =BoD¢O0*U(NP3) )/ (5,D20% (U(NRP2)YeUU(NP]1))2B8,0D¢0 M 98
*al (NP3))

e BFm({)eD*0ePREF(J))/(1eDe0+RPREF (J)) M99
B(JsNP2)=(B(JsNP2)+GF)/(1.Ds0+B(JoNP2)#GF) M 100
A(JoNP2) =) ,De0=B (JoNP2) B R M 101}
GO TO 20 M 102
AlJoNP2)=0,D¢0 R ‘M 103
CALL SOURCE (JsNP39CSyDS) M 104
BK1=)oD¢0/DX=DS . . . . .. ..M 108
BK28-BK1“F(JvNP3)‘CS M 106
BJUFaBJ#PREF (J) - M. 107
C(JoNPZ)'loD‘O/(2-000‘3-040°BJF“9K1) M 108
B(JosNP2)=C(JeNP2) # (2:.D90=BUF¥BK]) S M 109
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SLIP
C(J’NPZ)"C(JQNPZ)*40000‘BJF.BKZ M 110
20 CONT INUE —. M 11y
RETURN M 112
END M 113w
SOLVE

SUBROUTINE SOLVE (AeBeCoFoNP3) N 1

IMPLICIT REAL#B8(A=He0=2)

C THIS SOLVES EQUATIONS OF THE FORM N 2
C F(I) = A(I)®F (1¢l) ¢ B(I)#F(l=]) ¢ C(I) e [P URR . [ |
C FOR I=2.NP2 N 4

’ DIMENSION A(NP3)y B(NP3)s C(NP3)e F(NP3) N 5

NP2=NP3=] N 6

B(2)=B(2)@F (1)eC(2) N 7

DO 1 I339NP2 . N 8

T21eD¢0/(1eDe0=B(l)#A(I=1)) - e N 9.

AlI)=A(L)®T N 10

1 B(I)=(B(I)#B(I=1)+C(I))*T N1l
DO 2 I=2.NP2 N 12
JaNP2=1¢2 N 13

2 F(J)ZA(J)RF (Jel) B (J) N 16
RETURN N 15
END N 16=

WALL

SUBROUTINE WALL R 1

CIMPLICIT REAL%B(A=He0=2)

COMMON /GEN/ PEIOAMIQAME!DPDXOPREF(E)vPR(Z)OP(Z)ODENOAMUOXU'XD'XPO R 2
IXLoDX e XSTEP9CSALFA9ALPHAsXReREQORS:GAMe ZETAPPOsTHTOo YSTARTUSUPSID A 6

2IMENoIHEAT 2o TO9 INTG/YV/U(200) 9F (25200) 9R(200) sRHO(200)sOM(200)0Y(2 R 3
300)/7I/NoNPLoNP2sNPI9NEQoNPHIKEX s KINsKASE « KRAD/B/BETA:GAMA(2) 0o TAULs R 5
4TAUESAJI(2) sAJE(2) 9 INDI(2) 9 INDE (2) R 6
C CALCULATION OF BETA FOR THE I BOUNDARY O R 7
1 YI=e50404(Y(2)eY(3)) R 8
UI=e5D¢0®(U(2)+U(I)) R 9
RH'.ZSD‘O“(3.D‘0°RH0(2)09“0(3)) R 10
RE=RH®UI®*YI/VISCO(]) o L R 11
FP=DPDX®YI/ (RH®UI®UT) R 12
AM=AM]I/ (RH®UI) e e e ... R 13

c FOR LAMINAR FLOW AND AM=0 (NEED OIFFERENT EXPRESSION IF F=0) R 14

Sm1,000/RE=FP/2,D¢0 e — - R _1%

BETASRE® (S+FPeAM) R 16

TAUI=S#RH®UI*UL .. ROAT

IF (NEQsEQol) RETURN R 18

C CALCULATION OF GAMA S FOR THE I BOUNDARY R 19
DO 2 J=1yNPH R 20

€ . __FOR LAMINAR FLOW AND LIMITING ZERQ AM R 2)

SFaleD*0/ (PR(J)®RE) R 22

GAMA (J) sRE®PR(J) # (SFeAM) R 23

IF (INDI(JILEQ.)) AJI(JU)= SF“RH“UI“(Z'D‘O’F(JO])'F(JOZ)'F(J'3))'os R 24
#40 - . o

2 CONTINUE R 25

_______ _RETURN . . _ R 26
END R 27=
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The following is an example input to the boundary-layer computer code.
See subroutines BEGIN and PRE for input formats.

00321004150067
2.880E 05 667 ) lo4 o0 o0 642, « 9999
ol 1.0 ol 85 001 2000001
022
060 05283
32,1 +4398
6402 e 3609
96.3 «3012
128.4 +2533
16065 02151
192.6 - 1850
22467 o1612
256.8 01470
288,9 «1370
321, 21278
353.1 «1220
385.2 21128
417.3 «1077
44904 01027
4815 «1003
513,6 20965
545,7 + 0950
577.8 00943
609.9 20935
642, 20935
9000. « 0935
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APPENDIX B
DATA REDUCTION COMPUTER CODE
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MAIN
9 THIS IS A DATA REDUCTION PROGRAM
C INPUT IS PTly TW/TOy XMEs GAMMAs REYNOLDS NUMBER PER FOOTs AND
C PT2 DISTRIBUTION
C UNITS OF PT1 AND PT2 MUST BE CONSISTENT
C  THE INPUT XME IS FOR A FIRST GUESS ONLY
C IF THE INPUT TW/TO IS ZERO THEN THE WALL IS TAKEN AS ADIBATIC
C OUTPUT IS VELOCITY, TEMPERATURE s BOUNDARY=LAYER THICKNESSs BOUNDARY=
C LAYER DISPLACEMENT THICKNESSsy BOUNDARY=LAYER NOMEMTUM THICKNESS
C SHAPE FACTORs MACH NUMBERs TBARy AND SKIN FRICT]ION
C HEAT FLUX CAN ALSO BE DETERMINED (SEE THE CORRESPONDING LAB REPORT)
DIMENSION Y(100)9oPT2(100)ePT2P1(100)9sXM(100)9sTOTOE(100)
OIMENSION U(100)9eT(100)9TBAR(100)RHO(100) 9RHOU(100)
DIMENSION CF(100)eCCC(100)5CC(100)
Cr(1)=,001
READ(592) NUM
DO 10 LL=1y¢NUM
READ(S591) PT1loTWTOeXMEsGoR
READ(S92)NE
READ(593) (Y(N) sPT2(N) gN=19NE)
C READ(551) PTloTWTOeXMEsGoR
C READ(592)NE
C READ(593) (Y(N) 9PT2(N) sN=]14NE)
1 FORMAT (BE1060)
2 FORMAT(13)
3 FURMAT(2E10,0)
GP1=G+1,
GM1=G=1,
D=(GP1/2,) ##(G/GM1)
IF (XMEoLEolo) XMESSQRT(2./GM1® ((PT1/PT2(1))#8(GM1/G)=]1.))
Xe=XME#XME
IF(XMEoGToele) CALL XEDGE (PT2(NE) oPT19GeXME ¢ XE)
Pl=PT1/(le¢*GMI#XE/2,) #%(G/GM])
PT2(1)=P1
X=XE
XM (NE) =2SQRT (XE)
DO 6 N=1yNE
4 PT2P) (N)=PT2(N)/P}
J = NE=]
DO 5 N=21eJ
I=NE=N
IF (PT2P1(I) eLEoD) X=2,/6GM1# (PT2P1 (1) %% (GM1/G)=1,)
IF(PT2P1(I)eGTeD) CALL XDIST(PT2P1(I)sGeX)
XM(I)=SQRT (X)
5 CONTINUE
: XME=XM (NE)

A=GM] #XME# XML

CALL PR(XMEsGoAsP)
HW=TWTO* (1e+A/20)

Cl=le¢A/2e=HW
IF(TWTOeEQeDe)Cl=0,

D=SQRT (2. *A#HW+C1#C])
IF (TWTOeEQoe0o)D=SURT(AH#2.%#(1e*A/2s))

U(l)=0.
DO 7 K=1oNE

C=(XMIK) /XM{NE) ) ##2
CALL VT (AoHWsCloDgPoeCsosT(K)U(K))
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MALN

CALL TEMP (AsHwsCloDsPsU(K) ¢DHDV T (K))

" IF(KeEWel) T(K) =HW
TBAR(K) = (T(K) +A®U(K) CU(K) /2o=HW) / (1lo4A/2c=HH)
RHO (K) =16 /T (K)

RAOU (K) =RHO (K) #U (K)

CCC(K) =] o =RHOU (K)

CL(K) =RHOU(K) # (1e=U(K))

TUTOE (K) = (T (K) ¢A%U(K) #U(K) /2e) /{1e4A/20)

IF (KeNEel) CF (K)=CF (K=1)

IF (KeNEol)CALL SKIN(RoCF (K) 9GoXME WY (K) sU(K))
T(K+1)=T (K)

7 CUNTINUE __ _ _ _
PT2PT1=PT2(NE) /PTI
CALL SUM(YsCCCoyNEGVINTI)

CallL SUM(YsCCoNESVINT2)
CALL CFI(XMEsRyVINT2,SQCF)
CaLL PLUS (SQCFo YoRHOIRoNEICCCosCCoVINTLoVINT20AsHWoCloeDoP)

__CFF=SQCF#SQCF____
SHAPE=VINT1/VINT2

.00 15 M=]oNE
IF (U(M) 06Te0099)G0 TO 16

15 CONTINUE

16 DELTASY (M=1)¢(0:99=U(M=1))# (Y (M)=Y(M=1))/(U(M)=U(M=1))

11 FORMAT(1H1939Xs'THIS DATA REDUCTION SHOT IS FOR AN ADIABATIC waLL?®

1 9// +40Xs'RECOVERY FACTOR = 0,8B800%9//960Xs "PRANDTL NUMBER = ¢,
2 F6ebs//940Xs"GAMMA = "9F6049//940X9'PTR2E/PT]1 = 151PE1064e//s
3 40Xy *FREE~STREAM UNIT REYNOLDS NO, PER FOOT = '51PEL0,4s//9
4 40Xo'DELTACIN) =%y 1PE1le%o//940Xs'DELTA STAR(IN) m%y 1PElloéks//9
"5 40Xe'THETA(IN) =%9 IPElle%9//940XyI'SHAPE FACTOR B9y 1PElleé9//s
6 40Xo'CF (BASED ON RE=THETA EQ OF R, & M, REPo, NO, 3712) =%,
T 1PElle4e///)
IF(TWTOeNE Qo) WRITE(6912)PsGsPT2PT19RoDELTA9VINTLoVINT29SHAPECFF

e FORMAT (1H1+39X9 *THIS DATA REDUCTION SHOT IS FOR A NON=ADIABATIC WA

ILL®9//040Xs "RECOVERY FACTOR = 0,8800%9//940Xs "PRANDTL NUMBER = 1,
2 F6obe//940Xs 'GAMMA = '9F6e49//940Xe "PT2E/PT] = 1, 1PEL10c40//s

3 40X9"FREE=STREAM UNIT REYNOLDS NO, PER FOOT = ?91PEL10ec49//
4 40Xo"DELTA(IN) =%9 1PE]1lo%s//s40Xo'DELTA STAR(IN) =ty 1PE]lloée//y
S 40Xs'THETA(IN) =%y 1PElle49//940Xy*SHAPE FACTOR =%y 1PElleé9//9
6 40Xy 'CF (BASED ON RE=THETA EQ OF R, & M, REP, NO, 37]12) ®9,
T lPElloe4s//7)
WHITE (648)

® |

FORMAT ( ZoTXe 'YW PollXo'PT2'9BXe"TO/TOE Y9 10Xo"MP910Xe *U/UE?Y 9o
1 9T/TE's SXs'TBAR'9TX9 *RHO/RHOE* 92X ¢ *RHO®U/ (RHOE®YE) * 94X9'CFY4/)
WRITE(696) (Y(N)oPT2(N) o TOTOE (N) 9 XM (N) sU(N) s T(N) 9 TBAR(N) 9RHO (N) »
1RHOU(N) o CF (N) s N=] 9 NE)

6 FORMAT (1P10E13.5)
e WRITE(6,518)

18 FORMAT(///)

10 . CONTINUE

STOP

END
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XEDGE

SUBROUTINE XEDGE (WeZeGoYseX)
x=Y#Y

GP1=G+1e
GMl=G=1,

C=w/2Z
F=(GPI#X/ (GM1#X¢2,)) % (G/GM])® (GP1/(2.#G#X=6GM]))##(]./GM])=C

DFDX=(F¢C)#G/GM1# ( 2o/ (X#(CMl¥X226)) =206/ (2a#G#X=GM]))
XNEW=X=F/DFDX

1F (ABS ( (X=XNEW) /XNEW) oL To0,0001)G0 TO 2
K=XNEW

G0 T0 1
2 X=XNEW

RETURN
EwND

XDIST

SURROUTINE XDIST(BoeGoeX)
GP1=6G+1l.

LGM1=G=], .
1 F=(GP1¥X/2,)## (G/GM]) #(GP1/ (2,#G#X=6GM]1)) #%(],/GM])=B

DFDX=(F+B) #G/X# (2o X= l.)/(Zo“G*X GM1)
XNEW=sX=F/DFDX

IF (ABS ( (X= XNEW)/XNEW).LT.0.000I)GO T0 2
X=XNEW

GO TO 1
2 XsXNEW

RETURN
END

PR

SUBROUTINE PR(XMeGoAeP)
C CALCULATES PRANDTL NUMBER FOR A RECOVERY FACTOR OF 0.88
k=,.88
ALES#T0/20
ALl=AL+1,
AL2=AL+2,
BEz4e®AL
A= (G=1o) #XMH#XM
D=SART (2. #A®(1.4A/26))
CALL TINYF(AsHWe0ooDos0osFO)
CALL TINYF(AeHWoOosDolooF 1)
HONE=A%BE/ (AL1%AL2) +A/2+¢F1=F0
) P=]loe=A%#(R=]1,)/(20*HONE)
RETURN ‘
END
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"SUBROUTINE SKIN (RyCFoGAMeXMeYoU)

Cl=b.TH

C2=5,10
OMEGA=.T768

RE=R®Y/12,
X=SQRT(CF/2,)

75104 BB% ((GAM=14)/2,) ¥XMH#S2
£3SQRT(Z)

SIGMAZ( ((GAM=1¢)/2) #XM##2) /(To+ (((GAM=1,)/24) #XMP#D)
SESIG=SQURT(SIGMA)

I

GA=CT#ALOGI0 (RE®#X#Z## (=2 # (o 5¢+0OMEGA) ) ) ¢C2
G=GA=(1a/ (SQSIG#X#Z) ) #ARSIN(SQSIGHY)

TOGDXS(CI/(2,3%X) )+ (1. /(SUSIGH (X#%#2) #7Z) ) *ARSIN(SQSIG*U)

ANEW=X=06/06DX

IF (ABS(XNEW=X)/XANEW) oLTo0.0001) GO TO 2
X=XNEW

60 TO 1

2 X=XNEW

ol

Ch=2,#Xsup

SUM

T T SUBROUTINE SUM(XsYgNESVINT)
X 15 THE INDEPENDENT VARIABLE
Y IS THE DEPENDENT VARIABLE
DIMENSTION X(100)eY(100)

1

VINT=0,
NNE=NE=]"
VU 1 I=lenn
VINTSVINT$ (X(1+1) =X (1)) #(Y(I+1) Y (1)) /20

KETURN
END
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T PLUS

SUBROUTINE PLUS(SQCFy YsRHO9R9NESsCCCoCCoVINTI9oVINTZ29AsHWsCl9DsP)
DIMENSION Y(100)sRHO(100)+CCC(100)+CC(100)sYP(100),UP(100)

DIMENSION CCCP(100)CCP(100)+TP(100)
c THIS SUBROUTINE USES THE wOLL MODEL TO DETERMINE Y AND U NEAR THE
c wALL TO IMPROVE THE CALCULATIONS OF THETA AND DELTA STAR
YE=138Be/RHO (1) #SQART (2.) /SQCF#12,/R

DO 1 I=2.NE
IF(Y(I)eGTeYE)GO TO 2
1 CUNTINUE
2 N=]
DY=Y(N)=YE
CALL SUM(YsCCCoNoVINTI1W)

CALL SUM (YsCCoNoVINTZW)
VINT1=VINT]1=VINT1W

VINT2=VINT2=VINT2W
YPLUS=0.
YP(1)=0,
UP(1)=0.

CCP(1)=0.
CCcP(l)=1.

DO 3 J=2,70
YPLUS=YPLUS+2,

UPLUS=ATAN(Be#TAN(0,09%YPLUS/8,))/0.09
YP(J)=YPLUS/RHO (1) ##],268#SQRT (2.) /SQCF#12,/R

UP (J) =UPLUSH#SQCF/SQRT (2.%RHO (1))
CALL TEMP(AoHW, 0190999UP(J)QDHDV’TP(J))

CCCP(J)=1a=UP(J) /TP (J)
3 CCP(J)=UP(JII/TP(J)#*(1e=UP(J))

JJ=70
CALL SUM(YP,CCCPsJJWVINTIP)

CALL SUM(YP,CCPoJJsVINTZP)
VINT1=VINT1¢VINT1P+ (CCCP(JJ)+CCC(N))/24%DY

VINT2=VINT2+VINT2P+ (CCP(JJ) +CC(N)) /2,%0DY
KETURN
EnD
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T R

‘ SUMROUTINE CFI(XMEsKoVINT24SQCF) ' o
C - TnIS SUBROUTINE SOLVES FOR CF USING EQUATION (22) OF THE WINTER
c AND GAUDET REPORT Ro& Mo NOo 3712 DECEMBER 1970 T -
 FUSle+e(56%XME#XME
FU=SART (1o + . 24 XME#XME )
C=FD¥R/12%VINT2
L=003894 ' , T
L R=4.632
XNEW=0,002#40,5
b5 Xx=xXNEw
R TS I B
TEXP=EXP (0.537/X)
ANEW=X= ((GHF#TEXP=C)/ (GHF#TEXP# (=0,53T7/X#82) =H*TEXP) )
S=ABS ( (XNEw=X) /XiNEW)
IF(SaLTe0e0001)60 FO 100
LU TO %5
100 CUNTINUE
SUCF=XNEW
KETURN
END

The following is an example input to the data reduction computer code.
See MAIN for input formats. -

001

17.68 [ -] lo& 3819000,
o2y - e
00 13,53

20096 l4e7)

«034 14.94

o077 15,18 ) o -
0ll 15,28

o177 1575 U S
206 15,9

02492 166

22778 16,11

03208 | 16.16 e
036495 16637

03926 _ 16.4) . _. .. .
0421 1654

a864] 16062 ~ .

507 16067

28357 16,69 v e
«5786 16,77

06216 16.92 B} I e
65 17.07

206932 17016

lo& 17,68
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NOMENCLATURE

A (y - HM 2
a Constant in Eq. (6)
C Defined by Eq. (13)
c - Constant in Eq. (48), equal to 4
Ccr Local skin-friction coefficient, 7 /(1/2p_U_2)
Ch Stanton number, - qyw /o U_(hay - hy)
Cp Specific heat at constant pressure
Cy Specific heat at constant volume

e/U;2
e Turbulent kinetic energy per unit mass, (<u2> + <v2> + <w2>)/2
€ e/H,,,
F, (1 + 02 M2)1/2
Fs 1 + 0.056 M 2
f Function defined by Egs. (60) and (67)

H Specific total enthalpy, also used for shape factor, §*/6
H H/h

A H/H,_

h Specific enthalpy

h' Fluctuating local static enthalpy

h h/h_

h, Zeroth-order h

hy First-order h
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Molecular thermal conductivity
Eddy thermal conductivity
Dissipation length, L = L/s
Prandtl mixing length

Integral scale length of turbulence

Mach number

U = npl/m used herein as m = 7

Mass flux

Prandtl number, u c,/k

Mixed Prandtl number, ¢, (u + u)/k + ky)

Turbulent Prandtl number, c, u:/kq

Mean pressure

(v - Dp/(ypo)

Impact pressure

Heat-transfer rate

Reynolds number based on pipe diameter and velocity at pipe center
Reynolds number based on pipe diameter and mean velocity

Reynolds number based on boundary-layer thickness and free-stream
velocity

Reynolds number, p, (2H, )/2 s/po
Reynolds number, p_ U_x/u_
Recovery factor, r = (T,y, - T)/(To,, - T.)

G0

Defined by Eq. (5)
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s Reynolds-analog factor, s = c¢/2c, (also- used for characteristic length)

T Mean static temperature

T (To - Ty)/(Ts,., - Ty)

t Time

U Mean velocity in x-direction

U U/(H,, )/?

Ur Friction velocity (7y/pw)!/2

u Fluctuating velocity in x-direction

u U/u,

ut U/(7y [pw il 12

-<uv> Reynolds stress, a bar over this quantity indicates normalization with respect

to Hy

\'% Mean velocity in y-direction

v V/(H, )2

v Fluctuating velocity in y-direction

w Fluctuating velocity in z-direction

X Coordinate along body surface

X x/s

y Coordinate normal to body surface

y y/s

y* pw Ury/iw

z Coordinate completing right-hand system with x and y

a 13 constant equal to 0.18 in Section 3.0 and equal to (5/2)m in Section
.0

B c(5/2)m
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Cp/cv

Defined by Eq. (62) for constant temperature wall and by Eq. (69) for
an adiabatic wall

Boundary-layer thickness defined as the value of y where U/U_ = 0.99
Boundary-layer displacement thickness

A constant equal to zero or 1/8 in. Section 3.0 and equal to (1 - Pry)
in Section 4.0

Defined by Eq. (61) for constant temperature wall and by Eq. (68) for
an adiabatic wall; also exponent of T in power law relation for viscosity

y/é

Local wall angle

Boundary-layer momentum thickness
Molecular viscosity

1o

Eddy viscosity

Density

plpo

12'—1 M, 2 /(1 + -7—2—1— Mj)

Schmidt number for turbulent kinetic energy
Total shear stress

Turbulent shear stress

Stream function

Transformed stream function

u/p
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SUBSCRIPTS

aw Adiabatic wall

E Outer edge of boundary layer

I Inner edge of boundary layer

o Local total conditions, except h,
w Wall conditions

w Free-stream conditions

SPECIAL NOTATION AND CLARIFICATION

<> Indicates time average, e.g. <uv> = {n_n)g 71{- ft (uv) dt’
-t

The variables denoted in the nomenclature as mean quantities are
understood to be time averaged.



